Mineral Groups Flashcards
Oxides
X2O / XO / X2O3 / XY2O4 / XO2
- strong ionic bonds
- dense
- hard
- high melting point
- accessory minerals
Oxide ores
Fe2O3 (hematite) vs Fe3O4 (magnetite)
*Fe3O4 has Fe2+ and Fe23+
FeCr2O4 (chromium) vs UO2 (uranium)
MnO2 (pyrolusite) vs SnO2 (cassiterite) vs FeTiO3 (ilmenite)
*(manganese vs tin vs titanium)
Hydroxides
*OH- or H2O —> weaker bonds!
- soft
- low density
- formed by alteration / weathering
- form some RESIDUAL ores of Al & Fe
Hydroxide ores
Al(OH)3 (bauxite) vs ZnO (zincite; hexagonal)
MgAl2O4 (spinel, isometric; XY2O4) vs Fe3O4
(magnetite, *a* spinel, isometric)
Sulfide
XmZn
- all opaque
- majority of metallic ores
- brightly colored streaks (characteristic of sulfides)
Polymorphism: pyrite & marcasite (FeS2)
NOTE: Arsenopyrite (FeAsS) often contains gold
Copper sulfides
Cu2S (chalcocite)
CuFeS2 (chalcopyrite)
Stibnite (sulfide)
Sb2S3
(Sb = antimony, hence “stibnite”)
*primary ore of antimony
Ore zones (3)
Oxidized zone / oxidized enrichment
- oxidized, above water table
Supergene enrichment / enriched zone
- secondary
- below water table
- reduced!
Hypogene / primary zone
- primary ore
Carbonates
- strongly bonded ionic complexes
- anoisodesmic bonding (bond strengths: anionic complex > cation-anion)
- (-2/3) = residual oxygen = total cation charge - total anion charge
*O cannot be shared
Carbonate groups
Calcite (hexagonal); polymorph = aragonite
CaCO3
Aragonite (orthorhombic); polymorph = calcite
CaCO3
Dolomite (hexagonal)
CaMg(CO3)2
Copper carbonates (monoclinic)
- malachite (Cu2CO3(OH)2)
- azurite (Cu3(CO3)2(OH)2)
Phosphates
- strongly bonded ionic complexes
- anoisodesmic bonding (bond strengths: anionic complex > cation-anion)
- Ca5(PO4)3 (apatite; hexagonal)
*found in titaniferous magnetite bodies
*(PO4)3 replacements:
—> OH: hydroxyapatite
—> F: fluorapatite
—> Cl: chlorapatite - (Ce, La, Y, Th)(PO4) (monazite; monoclinic)
*found in granites
*up to 20% ThO2 —> radioactive
Halides
Based upon anionic element:
F-, Cl-, Br-, etc.
- forms via precipitation, mostly in arid region that used to contain saline water (since evaporated)
*gypsum contains H2O vs anhydrite (no H2O)
Orthosilicates
[SiO4]4-
Si:O = 1:4
- olivine (Mg, Fe)2SiO4
— Mg —> foresterite
— Fe —> fayalite - aluminosilicates Al2SiO5 (EXCEPTION TO 1:4!)
— kyanite (high P)
— sillimanite (high P & T)
— andalusite (low-mid P & T)
Garnet
X3Y2(SiO4)3
X3: Ca2+, Mg2+, Fe2+
Y2: Al3+, Fe3+, Cr3+
Ca3Al2(SiO4)3 = grossular
vs
Ca3Fe2(SiO4)3 = andrudite
Framework silicates
SiO2
Si:O = 1:2
Quartz: SiO2
Crystalline: citrine, alpha-quartz
Microcrystalline: chert
Amorphous: opal
Polymorphous: tridymite, cristobalite, alpha-quartz, beta-quartz, coesite, stishovite
Feldspars (of framework silicates!)
*Also part of framework silicates*
Si:O = 4:8
Si4+ <–> Al3+
K-feldspars:
KAl(Si3O8)
Plag feldspars:
NaAl(Si3O8) = albite
CaAl2(Si2O8) = anorthite
Plagioclase feldspars
NaAl(Si3O8) = albite
CaAl2(Si2O8) =
anorthite - triclinic/monoclinic - albite twinning - parallel twinning
Potassium feldspars
K(AlSi3O8)
\*microcline = triclinic, stable, very low T \*orthoclase = monoclinic, stable, low T \*sanidine = monoclinic, high T (due to rapid quenching, more sodic than lower T forms)
Inosilicates
AKA chain silicates
SiO4 linked by [at least] 2 oxygen shared
Two types of chain/inosilicates:
Single Chain
Double Chain
Single Chain Inosilicates
[Si2O6]4-
Si:O = 1:3 = 2:6
SiO4 linked by 2 shared oxygen
*Pyroxene group: equant (88/92 degree cleavage)
— octagonal cross section
— anhydrous
— higher specific gravity
— crystallize at higher temperature
CaMgSi<sub>2</sub>O<sub>6</sub> = diposide = a clinopyroxene MgSiO<sub>3</sub> = enstatite = clinopyroxene or orthopyroxene? FeSiO<sub>3</sub> = ferrosillite = orthopyroxene CaFeSi<sub>2</sub>O<sub>6</sub> = hedenbergite (clinopyroxene?)
Double Chain Inosilicates
[Si4O11]6-
Si:O = 4:11
SiO4 linked by 2 OR 3 shared oxygen
*Amphibole group = elongate (56/124 degree cleavage)
— diamond cross-section
— amphibole BREAKS DOWN into pyroxene
— contain OH-!
Ca<sub>2</sub>Mg<sub>5</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> = tremolite Mg<sub>7</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> = anthophyllite Fe<sub>7</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> = grunerite Ca<sub>2</sub>Fe<sub>5</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> = ferroactinolite
Pyroxenoid Group
CaSiO<sub>3</sub> = wollastonite (twisted chain b/c of Ca size) FeSiO<sub>3</sub> = orthopyroxene (ferrosillite?) MnSiO<sub>3</sub> = rhodonite
Cyclosilicates
[Si6O18]12-
Si:O = 6:18
SiO4 tetra-linked rings & 2 shared oxygens
Al2Be3(Si6O18) = beryl
- rings held by Al & Be
- in granitic & pegmitic
- aquamarine, emerald
*tourmaline
- circular habit b/c of ring unit cell structure
- in cements & sandstones
- gemstone = diagnostic
- cross-section = striations
(Mg, Fe)2Al3(AlSi5O18)*nH2O = cordierite
*Al3 = octa
*PT conditions indicator
- partial melt/decompression mineral
- paratectic phases
- thin section: biaxial & cleavage (vs quartz w/o cleavage & not biaxial)
Disilicates/sorosilicates
(SiO4)2
Si:O = 2:7
*share ONE oxygen
Ca2Al2(Al, Fe3+)OOH[Si2O7][SiO4] = epidote
*Al, Fe3+ —> complex solution series (epidote - clinozoisite)
- biaxial
- cleavage
- granular masses
- retrogression
- common association
(Ce,Ca,Y,La)2(Al,Fe3+)3(SiO4)3(OH) = allanite (aka orthite)
- monoclinic
- complex formula (solid solution Al3+ = Fe3+)
- rare earth elements (e.g. O)
- can take predicting Pb!
- radioactive —> radiation damage
- geochronology applications
- igneous & ore deposits