microscopy Flashcards

You may prefer our related Brainscape-certified flashcards:
1
Q

Bright field microscopy/compound light microscopy

A

fixed and processed tissues/cells.
high magnification (40 - 1000x),
two sets of lenses: the ocular lens (in the eyepiece) and the objective lenses (close to the sample)
low optical resolution due to limitations of light + staining

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Bright field microscopy/compound light microscopy PROCEDURE

A

Process: Isolate tissue/organ → Kill tissue (usually with aldehydes) → Remove water and replace with alcohol (dehydrate) → Replace alcohol replace with xylene → Replace xylene with liquid paraffin, let solidify (tissue is solid in wax) → cut tissue and put in microtome (10-15 µm sections), put on slide → Remove paraffin → By taking slide, put it back in xylene then put it back in ethanol and finally water. Left with tissue section w/o wax but water is back in tissue. Now you can stain them → Stain with dye

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Cryostat

A

A type of Microtome (machines that slice tissue very thinly)
maintains the cryogenic temperature of samples or devices placed inside it. Freezes the tissue and also cuts the frozen tissue for microscopic section.
Cryosections are faster, but integrity of tissue is somewhat compromised (Substitutes for the paraffin embedding process, e.g. makes the tissue rigid)
Used for Mohs surgery - a process used by dermatologists to make sure that the margin of skin cancer like melanoma cells has a “clear margin” not showing cancer cells - can take much of a day to do this

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Phase Contrast Microscope

A

Generates contrast due to differences in refractive indices in cells.
Living cells- not fixed
Constructive and destructive interference is critical to the function of this microscope.
Manipulating light

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Differential Interference Contrast Microscope (Nomarski)

A

Used by cell biologist who want to use living cells and see the outer surface of cells
Produce 3d effect and can do limited optical sectioning
Especially important to neurobiologists for positioning intracellular micropipettes for intracellular injection of transmembrane voltage recordings as well as doing patch clamping
Manipulating light

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Dark Field Microscopy

A

Good for microbio (good for viewing bacteria)
Visualize small objects in cell with high contrast (mitochondria and lysosomes)
No stains necessary but can be used
Works due to a special condenser

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

The Confocal Microscope

A

Spinning Disk and Laser-Scanning microscopes (we will go over)
Based on lasers and computers that hadn’t been developed to build the first confocal microscope
Small focal plane creates clearer image
Major components:
Laser (monochromatic (488nm) - diffraction is limited, laser can be manipulated to image specimen spot by spot)
Stray image is filtered using a confocal pinhole, total summed image can be displayed on screen
(photobleaching is a problem with fluorescent dyes)
Vivascope

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

The Confocal Microscope

Benefits of Confocal vs. conventional

A

Decrease stray image by 50%
Optically section a cell
Generate stereo images
Use both colorimetric and fluorescent dyes
Excellent for double or triple labeling where all two or three different colored stains can be distinguished from each other
Can be used for art conservation

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Laser-Scanning confocal

A

(first gen)
Slower but generates a bright image
Problem: can photobleach and not good for dynamic interactions due to the time required for imaging
Heat is created that can negatively affect the image and practical limit of resolution
Fine for routine work using fixed specimens

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Spinning Disk Confocal

A

(second gen)- improvements to spinning disc
System that views an image through several holes simultaneously within a millisecond
Good for dynamic, moving phenomena
Faster
Lower laser intensity required
Decrease in photobleaching
Less heat generated
Good for living cells undergoing dynamic processes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Fluorescence Microscopy

A

Fluorochromes or fluorescent dye - absorb light of one wavelength and emit at a slightly longer wavelength. The longer wavelength is due to energy lost (heat) upon absorption of the excitation light.
Fluorochromes can be used to monitor some changes in physiologics in a living cell

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

FRAP - Fluorescence Recovery After Photobleaching

A

Measures membranes fluidity of a particular protein in living cells in many ways
Uses a fluorescently tagged cell membrane protein
A defined laser beam localized on part of plasma membrane and the fluorescence is photobleached
Next one has to determine the amount of time it takes for the fluorescence to re-distribute itself to the bleached area (or not)
Indirect method of monitoring mobility of that protein in the membrane

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

TIRF - Total Internal Reflection Microscopy

A

Easily images activities and structures near the cell surface that confocals cannot accomplish
Angles excitation beam
Creates “evanescent wave” 50-100 nm of the surfaces

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

FRET - Förster Resonance Energy Transfer & FRET Biosensor

A

Useful to look in living cells when a ligand binds to a receptor
When X (ligand/hormone) binds to Y (receptor) it gives off a different wavelength to make a new color
X gets excited and makes the Y excited, which gives off its wavelength to indicate that they bonded to each other
Biosensor measures muscle proximity
Biosensor is a molecule that can be synthesized that can light up via FRET when it changes shape upon binding with a molecule that you want to measure
Calmodulin is used to indicate if calcium is at high or low levels in cells
Calmodulin is fluorescent red when it’s inactive, and becomes green when it gets excited (calcium makes it excited and activates the fluorescent green color)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Vital Fluorescent dyes

A

Vital = alive
Ex) JC-1 - mitochondria - mitotracker red, Rhodamine 123, stains mitochondria red and shows activity shown by emission profile, see healthy or unhealthy cells
JC-1 indicates how active mitochondria is in the cell
Mitochondria has proton motor force (PMF)
Higher PMF (red)= more ATP it can make
Lower PMF (green)= less ATP

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Vital Fluorescent dyes

A

Ex) Calcein-AM, propidium iodine - monitors plasma membrane integrity and indirectly whether cells dead or not
Determined whether the membrane is there or not (living/dead assay) (Live/dead assay)
Cells that contain the Calcein are seen as green = alive
Cells that don’t have Calcein are dyed red because the dye penetrates into their compromised membrane = dead
Ex) Fluo 3-AM - measures intracellular calcium
Qualitative assessment of fluorescent probes - one color dye is used that shows the difference in concentration of Calcium in cells (different concentrations show different colors)- Calcium indicator dye (used in neuron assessment)
Ex) BCECF-AM - measures pH in organelles
Lysosomes are very acidic

17
Q

Fluorescence immunocytochemistry

A

Locate specific molecules (proteins) in or on cell using fluorochromes associated with antibodies (uses antibodies to identify location of protein of interest in the cell)
Antigen - capable of eliciting an immune response
Antigenic determinant - epitope - specific portion of an antigen molecule to which the antibody is capable of responding/binding
Antibody - molecule that is bivalent (has two binding sites), recognizes antigens and binds to them in the variable domain region
Fab - antigen binding end
Fc - end region that fluorochrome attaches to
Specificity - ability of a single antibody to bind to only one antigen

18
Q

Fluorescence immunocytochemistry

A

Affinity - degree to which an antibody to bind to a given antigen
High affinity means that it binds tightly (preferred) versus a low affinity antibody
Indirect vs. direct
Indirect
is more common, uses primary antibody and then a secondary antibody
Preserves the integrity of the antibody
Secondary antibody binds to the fc region of the primary antibody
Direct
uses one antibody and can cause the antibody to change its degree of affinity and specificity - not good
Presence integrity of antibody

19
Q

Monoclonal vs. Polyclonal Antibodies

Mono

A

Expensive
Single antibody species
Will only bind single specific site
is
Used to treat diseases such as cancer
Cells grown in culture are now immortal (stored forever)
Can be used to determine which antibody is most specific and has highest affinity for specific antigen
Bispecific antibodies are generated using “quadroma” cell lines (have two different Fab ends) - used for treating cancer. Biologic drug b/c it’s made out of cell lines
T-cells bind and target tumor cells to kill them

20
Q

Monoclonal vs. Polyclonal Antibodies

Poly

A

Cheap
Mixed population of antibodies
May bind to different areas of the target molecule
Could be a problem bc they might cross-react with other non-target proteins
Inject antigen
Antigen is processed and presented to B cells
Antigen associates with the antibodies on the cell surface, causing B cells to divide
Clones of B cells are produced -more b cells means less specificity
Antibodies then shed and can be collected from the blood serum due to ammonium sulfate precipitation
Hybridomas - fused nuclei of two cells
Cancer cells (immortal) are fused with moral cells (from animal)
6. Put in culture dish to grow different cell types
Unfused cells die (selected against), fused cells grow (selected for)

21
Q

ELISA - Enzyme Linked Immunoassay

A

Not a microscope, but similar
Detects antigen concentration in a solution sample
Direct - antigen is detected with enzyme-labeled primary antibody
Indirect - antigen is detected with enzyme-labeled secondary antibody
Sandwich - antigen is captured through a pre-coated “capture antibody”
Often used to determine the relative amount of a protein present in a cell under two conditions
Add primary enzyme, secondary enzyme with antigen, then add substrate

22
Q

Micro Spectrofluorometry/Plate Reading Spectrofluorometers

A

Micro Spectrofluorometry
Plate reading spectrofluorometers
Single cells
Cant average signals from large numbers of cells
Generates images: qualitative
Plate reading spectrofluorometers
Not a microscope
Averages signals of thousands of cells together
Generates fluorescent intensity level values (# not image): quantitative
Gives a graph that reveals exchange rates or membrane fluidity
First one - CytoFluor (our lab and Millipore Corporation in 1980’s)

23
Q

GFP, YFP, CFP as reporter molecules

A

GFP - green fluorescent proteins
Extracted from jellyfish
GFP completely absorbs this blue light and emits it as a green light.
reporter for monitoring gene expression in vivo, in situ and in real time
YFP - Yellowish-green Aequorea fluorescent proteins
CFP - Cyan Aequorea fluorescent proteins

24
Q

Transmission Electron Microscopy

A

Transmits electrons through a specimen = resolution is 0.1 nm
Resolution is governed by Abbe’s equation (diffraction is limited)
The faster the electrons, the shorter the wavelength, the higher the resolution
TEM techniques and applications:
Plastic thin sectioning techniques:
Fixation - glutaraldehyde which cross-links (fixes) proteins followed by osmium tetroxide (fixes phospholipids)
Need to embed cells in something hard so they can be easily cut into sections
Series of dehydration steps - removes water
Embed in plastic, not wax - need harder resin for ultrathin sectioning
Use ultramicrotome to cut sections - float on water

25
Q

Transmission Electron Microscopy

A

Interference colors tell you the thickness - gold is good, silver is ok, blue/purple is too thick (not good)
Strain with heavy metal strains because electrons can’t detect colorimetric dyes or fluorochromes - TRM is all black and white
Lead - strains membranes
Uranium - counter stain (everything else)
Freeze-fracture
Designed to view internal organization of membranes
Cells are frozen in cryoprotectant in liquid nitrogen, split with a razor blade, and then coated with a thin layer of platinum follow by carbon
Creates a platinum replica - the carbon stabilizes the replica but is not electron dense
Ultrastructural Immunocytochemistry

26
Q

Transmission Electron Microscopy

A

Same as fluorescence immunocytochemistry but gold particles are used instead of fluorochromes
Can do double label experiment with two different size gold particles
Can identify heavy metals, so gold particles are used to tag/label cells
There’s different sized gold particles
5 nm to 20 nm
Ultrastructural Audiography
Similar to light microscopy
Can use radioactive particles to label receptors
Electron tomography
3-D imaging through serial sections
Can also be used with cryo-electron microscopy where the specimen is frozen and remains in the frozen state

27
Q

SEM - Scanning electron microscope

A

Scans the surface of a surface of a structure by electrons being reflected from the surface = resolution is 10 nm (100 fold less than TEM)
Fix cells and then spray metal on top of them viewing emission of secondary electrons
Lower resolution than TEM and much less used but nonetheless complementary

28
Q

High voltage electron microscope

A

1,000,000 volts
Increases theoretical limit of resolution
Doesn’t improve practical limit of resolution because of high heat generated (can melt specimens)
Best used for imaging thick sections

29
Q

Laser-capture microdissection microscopy

A

Isolate single cell or cells within a tissue section for subsequent molecular analysis
Standard tissue sectioning on glass slide
Ethyl-vinyl acetate is overlaid on specimen and then melted using a laser that can span 7.5 to 30 micros
Appropriate cells are removed
Can analyze individual cells in a tumor but need to use an amplification technique for molecular analysis

30
Q

Atomic Force Microscopy

A

Scanned proximity microscope because it uses a fine tip

Good for examining surfaces of cells because they are non-conducting

31
Q

Scanning Tunneling Microscope

A

1986 Nobel Prize
First to image native DNA and see its structure
Not useful for cell structure, but great potential for imaging biological molecules without the problems of heat generation

32
Q

Two Photon Microscopy

A

Fluorescence imaging technique that allows one to image living tissue but with deeper tissue penetration which is one of the limits of confocal
Light detection is very efficient and there is reduced phototoxicity that can occur in the more intense confocal systems

33
Q

Super Resolution Microscopy

A

Why aren’t light microscopes capable of resolving capabilities similar to electron microscopes
Answer is diffraction
All microscopes are considered either “diffraction limited” or “not diffraction limited” (or “super resolution microscopy”)
PALM super resolution microscope - not governed by Abbe’s rule (“maximum accuracy is obtained when the scale and the measurement axes are common)
What is super-resolution microscopy used for?
directly observe living subcellular structures and activities.

34
Q

Super Resolution Microscopy

3 Types:

A

Stimulated emission depletion (STED) microscopy - spatially patterned excitation
Structured illumination microscopy (SIM) - increase the spatial resolution of light microscopy. Live cells, thick sections, 3D
Stochastic optical reconstruction microscopy (STORM)/photoactivation localization microscopy (PALM) - activate or excite only a small percentage of fluorophores at one time, reducing spatial overlap and allowing images with as little as 5 nm resolution.

35
Q

Deconvolution Microscopy

A

Uses an algorithm to create a 3D view of fluorescently cells

36
Q

Polarizing light microscope:

A

Detect small, highly ordered parallel structures in cells such as microtubules
May be used by neurobiologists and muscle cell biologists
Has polariser just above the light source and an analyser just above the objective lens (above the specimen). Both can rotate to generate contrast
Polariser filters light into a single plane and analyser used to determine if intracellular structures rotate plane of polarised light
Can be used to analyse fibrosis (scar tissue due to collagen and other extracellular matrix proteins) in organs such as liver (collagen highly ordered structure and can be seen with this