Metabolism S2 - Energy and its Production Flashcards
Define cell metabolism
The highly integrated network of chemical reactions that occur within the cells
In which states are physiological changes to blood concentration of cell nutrients and their waste products seen?
- After meals
- Fasting
- Starvation
- Exercise
- Pregnancy
- Stress
In which states are pathological changes to blood concentration of cell nutrients and their waste products seen?
- Diabetes
- Atherosclerosis
- Obesity
- Shock
- Malnutrition
- Certain enzyme deficiency states
Where do cell nutrients circulating in the blood come from?
- The diet
- Synthesis in body tissue from precursors (not essential fatty acids or amino acids)
- Released from storage in body tissue
Cell nutrients undergo various chemical transformations in body tissues. What are they?
- Degradation to release energy - all tissues -
- Synthesis of cell components - all tissues except mature RBCs
- Storage - Liver, adipose tissue, skeletal muscle - Interconversion to other nutrients - Liver, adipose tissue, kidney cortex
- Excretion - Liver, kidney, lungs
What is oxidation?
Addition of oxygen or removal of a hydrogen ion
Loss of electron
What is reduction?
Removal of oxygen or addition of hydrogen ion
Gain of electron
What are the major carrier molecules in their oxidised states?
NAD+
NADP+
FAD
What are the major carrier molecules in their reduced states?
NADH + H+
NADPH + H+
FAD2H
Does exergonic or endogenic reactions occur spontaneously?
Exergonic
ATP acts as a _____ of free energy, not a ______
Carrier
Store
List high energy signals
ATP NADH, NADPH and FAD2H
List low energy signals
ADP NAD+, NADP+ and FAD
Describe CNS metabolism
- Energy from glucose (also ketone bodies under certain conditions)
- No fuel storage, therefore requires continuous supply of feels and oxygen
Describe heart muscle metabolism
- Energy from glucose, lactate, fatty acids or ketone bodies
- No fuel storage, therefore requires continuous supply of fuels and oxygen
Describe skeletal muscle metabolism
- Energy from glucose, fatty acids or ketone bodies
- Stores glucose as glycogen and some triacylglycerol
- Muscle protein can be used in emergency
- Can oxidise glucose to lactate under anaerobic conditions
Describe liver metabolism
- Energy from fatty acids, amino acids or alcohol. Can use galactose and fructose
- Stores glucose as glycogen
- Makes glucose from lactate, glycerol and amino acids
- Makes ketone bodies, cholesterol and triacylglycerol
Describe adipose tissue metabolism
- Energy from glucose or fatty acids
- Stores fuel in the form of triacylglycerol
Outline why cardiac arrest affects the heart and central nervous system more rapidly than it affects skeletal muscle
- Cardiac muscle and CNS are highly specialised tissue and do not contain significant stores of fuel or oxygen
- They have limited capacity for anaerobic metabolism
- Skeletal muscle has significant stores of fuel (glycogen) and oxygen (myoglobin)
- Skeletal muscle has limited capacity for anaerobic metabolism (~5minutes)
Why can humans digest glycogen but not cellulose?
- Humans do not produce an enzyme that can break 1-4β linkages (found in cellulose)
- We can degrade glycogen as we produce enzymes that degrade 1-4α and 1-6α linkages
Under anaerobic conditions, pyruvate produced by glycolysis in skeletal muscle may be reduced to lactate. What advantage is this to muscle cells?
- There is a fixed amount of NAD+ and NADH in the cell - The reactions of glycolysis requires presence of NAD+
- If all NAD+ is converted to NADH, glycolysis will stop due to lack of NAD+
- This does not normally happen under aerobic conditions
- NADH is converted back to NAD+ by the electron transport chain - Under anaerobic conditions, pyruvate is converted to lactate via the enzyme lactic dehydrogenase using NADH which is oxidised to NAD+
- This allows glycolysis to continue so it can provide the cell with ATP via substrate level phosphorylation
What are the possible fates of lactate produced by skeletal muscle under anaerobic conditions?
- Lactate released from muscle cells and then carried to the liver and heart muscle
- In both tissues it is converted to pyruvate by lactic dehydrogenase
- In heart muscle pyruvate is converted to acetyl-CoA that is subsequently oxidised in the TCA Cycle to provide energy
In the liver 3 things can occur
1) May also be oxidised to provide energy
2) Most will be converted to glucose via the gluconeogenic pathway
3) Oxidation to acetyl CoA which may be used for lipid biosynthesis (fatty acids, ketone bodies or cholesterol)
Define lactic acidosis
An elevation of plasma lactate that affects the buffering capacity of the plasma
Monosaccharide units are linked by _______ ________ and loss of ______ to form polysaccharides
Glycosidic bonds
Water