maths : analyse Flashcards

1
Q

entiers naturels N

A

N = {0 ; 1 ; 2 ; 3 ; …}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

les entiers relatif Z

A

Z = {… ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; …}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

les nombres rationnels Q

A

Q = {p/q , (p,q) € Z x (N \ {0} ) }

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

addition et multiplication dans R :

A
  • prolongent les opérations dans Q
  • associativité (x + (y+z) = (x+y) + z)
  • commutativité (x+y = y+x)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

développement des carrés (identités remarquables) :

A
  • (a+b)^2 = a^2 + 2ab + b^2
  • (a-b)^2 = a^2 - 2 ab + b^2
  • a^2 - b^2 = (a+b) (a-b)
  • ab = ((a+b)^2 - (a-b)^2) / 4
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

formule discriminant :

A

Δ = b^2 - 4ac

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

si Δ > 0

A

r1 = (-b - racine(Δ)) / 2a

r2 = (-b + racine(Δ)) / 2a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

si Δ = 0

A

r = -b / 2a

(racine double)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

si Δ < 0

A

pas de racines réelles

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

distance en x et y : (écriture)

A

|x-y|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

inégalité triangulaire :

A

|x+y| = |x| + |y|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

sous ensemble majorité :

A

un sous ensemble A est majoré si il existe M tel que qq soit a € A,
a <= M

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

sous ensemble minorité :

A

un sous ensemble A est majoré si il existe M tel que qq soit a € A,
a >= M

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

un sous ensemble borné :

A

un sous ensemble est borné si il est majoré et minoré

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

maximum :

A

le plus petit des majorants si le crochet est fermé
ex : [0 ; 1]
(et pas [0 ; 1[ )

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

minimum :

A

le plus grand des minorants si le crochet est fermé
ex : [0 ; 1]
(et pas ]0 ; 1] )

17
Q

borne supérieure :

A

M est la borne supérieure de A si M est le plus petit des majorants

18
Q

borne inférieure :

A

m est la borne inférieure de A si m est le plus grand des minorants de A