matematika (kotne funkcije n formule likov) Flashcards

1
Q

enakostranični trikotnik ploščina

A

S= (a²√3) ÷ 4

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

enakostranični trikotnik višina

A

v= (a√ 3) ÷ 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

enakostranični trikotnik ploščina

A

S= (c × vc) ÷ 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

polmer včrtane krožnice enakostraničnega trikotnika

A

r= (a√3)÷6

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

polmer očrtane krožnice enakostraničnega trikotnika

A

R= (a√3)÷3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

sinus

A

a÷c ; nasprotna kateta ÷ hipotenuza

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

cosinus

A

b÷c ; priležna kateta ÷ hipotenuza

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

tangens

A

a÷b ; nasprotna kateta ÷ priležna kateta ; SIN÷COS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

kotangens

A

b÷a ; priležna kateta ÷ nasprotna kateta ; COS÷SIN

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

ploščina trikotnika s sinusom

A

S= 1/2 × bc × sin Alfa

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

ploščina paralelograma s sinusom

A

bc × sin Alfa

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

ploščina romba s sinusom

A

a² × sin Alfa

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

sinusni izrek

A

(a ÷ sin Alfa) = (b ÷ sin Beta) = (c ÷ sin Gama) = 2R

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

kosinusni izrek

A

c² = a² + b² - 2ab × cos Gama
b² = a² + c² - 2ac × cos Beta
a² = b² + c² - 2bc × cos Alfa

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Heronov obrazec

A

S= √s × (s - c) (s - b) (s - a)

r= S ÷ s

R= abc ÷ 4S

s= (a + b + c)÷2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

kocka P, V, d

A

P= 6a²
V= a³
d= a√3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

kvader P, V, d

A

P= 2 × ( ab + bc + ac )

V= abc

d= √a² + b² + c ²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Valj P, V, d

A

P= 2πr² +2πr × v
V= 2πr × v
Osni presek = 2r × v

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

enakostranični valj P, V

A

P= 6πr²
V= 2πr ²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

tetraeder

A

P= 4 (a²√3) ÷ 4 = a² √3
V= 1/3 × Q × v
V= 1/3 × (a²√3 ÷ 4) × (a√3 ÷ 2)= ( a³ √2 ÷ 12)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

stožec

A

l= 2πr = (2rs ÷ 360°) × Alfa
P= πr² + πrs
pl= πrs
V= 1/3 × πr² × v
S= r × v

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

krogla

A

P= 4πr²
V= (4πr³ ÷ 3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Enakostranični stožec

A

2r= s
P= 3πr²
V= (πr³ × √3) ÷ 3
S= r²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

sin 0°

A

0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
sin 30°
1/2
26
sin 45°
√2 / 2
27
sin 60°
√3 / 2
28
sin 90°
1
29
sin 180°
0
30
sin 270°
-1
31
sin 360°
0
32
cos 0°
1
33
cos 30°
√3 / 2
34
cos 45°
√2 / 2
35
cos 60°
1/2
36
cos 90°
0
37
cos 180°
-1
38
cos 270°
0
39
cos 360°
1
40
tan 0°
0
41
tan 30°
√3 / 3
42
tan 45°
1
43
tan 60°
√3
44
tan 90°
neskončno
45
tan 180°
0
46
tan 270°
neskončno
47
tan 360°
0
48
cot 0°
neskončno
49
cot 30°
√3
50
cot 45°
1
51
cot 60°
√3 / 3
52
cot 90°
0
53
cot 180°
neskončno
54
cot 270°
0
55
cot 360°
neskončno
56
linearna enačba
enačba z eno ali več spremenljivkami na eno potenco
57
kdaj sta vektorja kolinearna?
dva vektorja sta kolinearna, če je kakšen od njiju 0 ali če imata enako ali nasprotno smer, to je, če obstaja kak k € R, da velja a= b×k
58
vektorja sta nekolinearna ko?
ko je ma + mb = 0 ...natanko takrat, ko je m=0 & n=0 c= ma + mb ; m; n € R
59
če je poljubna točka & S razpolovišče daljice s krajiščema A&B velja:
0S= 1/2 (0A+0B) ; (I II =0II - 0I)
60
kot fi je večji kot 90° kakšen je skalar?
negativen
61
os x, os y, os z
abcisna os, ordinatna os in aplikatna os
62
krajevni vektor A
rA = 0A
63
dogovorjeni vektorji oz. priviligirani vektorji
i (1,0,0) j (0,1,0) k (0,0,1) ti vektorji tvorijo ortonormirano bazo .... orto- vsi vektorji so med seboj so si med seboj pravokotni; normirana: |i|=1 , |j|= 1 , |k|= 1
64
produkt pravokotnih vektorjev
0
65
i × i
1
66
cos Alfa ko sta dva vektorja v istem začetku
(AB × AC) ÷ ( |AB| × |AC| )
67
lastnosti skalarnega produkta
a⇀⋅b⇀=b⇀⋅a⇀ komutativnost a⇀⋅(mb⇀)=(ma⇀)⋅b⇀=m(a⇀⋅b⇀) homogenost a⇀⋅(b⇀+c⇀)=a⇀⋅b⇀+a⇀⋅c⇀ distributivnost a × a = |a|2 = |a| ker a × a = 1 ... = √ a × a
68
Zveze med kotnimi funkcijami
Sin² x + cos² x = 1 Sin(90°- α ) = cos α Cos(90°- α) = sin α Cot α= 1÷ tan α... Tan≠ 0 Tan(90°- α) = cot α Cot(90°- α) =tan α Tan α= sin α ÷ cos α.... Cos α≠0 Cot α= cos α ÷ sin α.... Sin α≠0 1+tan² α= 1÷ cos² α ; cos α≠0 1+cot² α= 1÷ Sin² α ; sin α≠0
69
Težiščnica trikotnika ABC
T = 0A +0B +0C?