Matematik Flashcards
110 Integral –> e^5x / e^5x/2
e^5x - 5x/2 = e^5x/2 = e^2.5x / 2.5
112 Integral –> (5-3x)^-1
Där u = 5-3x => u’ = -3
du=u’ · dx = -3 · dx
=> dx= -du/(-3)
u^-1 / -3 du = - ln (u) / 3 + C
117 Integral –> (x^2 -1) / x^3 - 3x + 1
Substitution
u = x^3 - 3x + 1
u’ = 3x^2 - 3 = 3(x^2 -1)
(x^2 -1) = u’ / 3
1/u * u’/3 dx = 1/3 * 1/u * u’ dx = 1/3 * 1/u du
= 1/3 * ln (u) + c
119 Integral (1-x) ^0.5
-
121 Integral (ln x)^2 / x
u=ln(x)
=> u’ = 1/x
122 Integral sin x * cos x
-
125 Integral ln(x+1)^0.5
= 0.5 * ln(x+1)
u= ln (x+1)
v’ = 0.5
126 Integral x^3 * ln(x)
-
127 Integral x sin(2x)
-
128 Integral x cos(3x)
-
133 Integral x e^-x^2 mellan 0 och 1
u = x^2
u’ = 2x
136 Integral (2x + 5)^-1 mellan 0 och 5
u = 2x + 5
u’ = 2
(u)^-1 * u’/2 dx
138 Integral (x +1) / x^0.5 mellan 0 och 1
x^0.5 + x^-0.5
139 Integral e^x / 3e^x - 2 mellan 0 och 2 ln(2)
u=3ex -2
=> u’ =3ex
=> e^x =u’ / 3
143 Integral x / (x + 3) ^0.5 mellan 0 och 1
u=x+3
=> u’ =1
x =u-3
146 !!!!!!!!
148 !!!!!!!
Lim x—> Oändlighet e^-x = 0 (exempel tentamen 131030)
= 0
Bestäm gränsvärdet
lim𝑥→∞ (𝑥3 ― 3𝑥) / (2𝑥3 + 3𝑥)
Lösning = 0.5
Derivera 𝑦 = sin (𝑥) / (x2 +1)
cos (𝑥) ∙ (𝑥2 + 1) ― 2𝑥 ∙ sin (𝑥) / (𝑥2 + 1)^2
Derivera 𝑦 = (𝑥2 ― 𝑥^0.5)2,5
= 2,5 (𝑥2 ― 𝑥^0.5) 1,5 ∙ (2𝑥 ― 0,5𝑥^-0.5)
Derivera 𝑦 = 𝑒^ 𝑥3 ∙ cos (𝑥)
𝑒𝑥3 ∙ cos (𝑥) ∙ (3𝑥2 ∙ cos (𝑥) ― sin (𝑥) ∙ 𝑥3)
Bestäm ∂𝑓∂𝑥 och ∂𝑓∂𝑦 för tvåvariabel funktionen
𝑓(𝑥,𝑦) = 15𝑥4𝑦2 ― 𝑥2𝑦3 +2𝑦 + 3
∂𝑓∂𝑥 = 15 ∙ 4𝑥3𝑦2 ― 2𝑥 ∙ 𝑦3 +2 ∙ 0 + 0
= 60 ∙ 𝑥3𝑦2 ― 2𝑥 ∙ 𝑦3
∂𝑓∂𝑦 = 15𝑥4 ∙ 2𝑦 ― 𝑥2 ∙ 3𝑦2 +2 + 0
= 30𝑥4 ∙ 2𝑦 ― 3𝑥2𝑦2 +2
Bestäm ∂𝑓∂𝑥 och ∂𝑓∂𝑦 för tvåvariabel funktionen
𝑓(𝑥,𝑦) = (5𝑦3 + 𝑦 ∙ ln(𝑥))3
∂𝑓∂𝑥 = 3 ∙ (5𝑦3 + 𝑦 ∙ ln(𝑥))2 ∙ 𝑦 ∙ 𝑥 ―1
och
∂𝑓∂𝑦 = 3 ∙ (5𝑦3 + 𝑦 ∙ ln(𝑥))2 ∙ (15𝑦2 + ln(𝑥))