mat Flashcards

1
Q

definiraj matricu

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

kada su dvije matrice jednake?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

kada je matrica B veca ili jednaka matrici A?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

definiraj zbroj dviju matrica?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

definiraj vektorski prostor nad R

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

linearna kombinacija matrica

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

konveksna kombinacija matrica

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

kada su matrice ulančane?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

što je inverzna matrica?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

kada je matrica regularna?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

kada je matrica singularna?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

kada je skup vektora linearno zavisan?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

kada je skup vektora linearno nezavisan?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

definiraj bazu vektorskog prostora Rn?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

definiraj rang matrice

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

navedi elementarne transformacije

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

kada su matrice ekvivalentne?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

kada linearni sustav jednadžbi ima rješenje?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

definiraj proširenu matricu?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Kronecker-Capellijev teorem

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Cramerov sustav

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Laplaceov razvoj po i-tom retku

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Laplaceov razvoj po j-tom retku

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Binet-Cauchyjev teorem

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

rješavanje sustava jednadžbi pomoću Gauss-Jordanove metode

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

kada je sustav linearnih jednadžba homogen

A
27
Q

definiraj umnožak matrica

A
28
Q

derivacija realne funkcije jedne varijable u točki

A
29
Q

derivacija realne funkcije jedne varijable u intervalu

A
30
Q

definiraj tangentu

A
31
Q

definiraj normalu

A
32
Q

definiraj diferencijal funkcije jedne realne varijable

A
33
Q

kada je realna fja jedne varijable neprekidna u točki

A
34
Q

definiraj asimptotu

A
35
Q

definiraj točku infleksije

A
36
Q

navedi vrste asimptota

A
37
Q

definiraj Rolleov teorem

A
38
Q

definiraj Lagrangeov teorem

A
39
Q

definiraj L’Hospitalovo pravilo

A
40
Q

definiraj rastuću i strogo rastuću realnu fju jedne varijable na intervalu

A
41
Q

definiraj padajuću i strogo padajuću realnu fju jedne varijable na intervalu

A
42
Q

potreban uvjet za rast i strogi rast na intervalu

A
43
Q

potreban uvjet za pad i strogi pad na intervalu

A
44
Q

definiraj točku lokalnog min realne fje jedne varijable

A
45
Q

definiraj točku lokalnog max realne fje jedne varijable

A
46
Q

definiraj koeficijent elastičnosti fje y=f (x) u točki x

A
47
Q

kada kažemo da je fja neelastična

A
48
Q

potreban i dovoljan uvjet za konveksnu fju

A
49
Q

potreban i dovoljan uvjet za konkavnu fju

A
50
Q

Schwartz-Youngov teorem

A
51
Q

Hesseova matrica

A
52
Q

kako znamo da su neka dva dobra supstituti?

A
53
Q

kako znamo da su neka dva dobra komplementi?

A
54
Q

definiraj Eulerov teorem

A
55
Q

definiraj homogenu realnu fju n varijabli

A
56
Q

definiraj parcijalnu derivaciju realne fje dviju varijabli po x u točki (xo, yo)

A
57
Q

definiraj parcijalnu derivaciju realne fje dviju varijabli po y u točki (xo, yo)

A
58
Q

definiraj točku globalnog max realne fje dviju varijabli

A
59
Q

definiraj točku globalnog min realne fje dviju varijabli

A
60
Q

definiraj točku lokalnog min realne fje dviju varijabli

A
61
Q

definiraj točku lokalnog max realne fje dviju varijabli

A
62
Q

prenumerando i postnumerando uplate

A
63
Q
A