Logical Proofs - Valid Equivalence Arguments Flashcards
Double Negation (DN):
p :: ~ ~ p
p :: ~ ~ p
Double Negation (DN):
DeMorgan’s Theorem (DeM):
~ (p . q) :: ~ p ∨ ~ q
~ ( p ∨ q) :: ~ p . ~ q
~ (p . q) :: ~ p ∨ ~ q
~ ( p ∨ q) :: ~ p . ~ q
DeMorgan’s Theorem (DeM):
Commutation (Comm):
p ∨ q :: q ∨ p
p . q :: q . p
p ∨ q :: q ∨ p
p . q :: q . p
Commutation (Comm):
Association (Assoc):
p ∨ (q ∨ r) :: (p ∨ q) ∨ r
p . (q . r) :: (p . q) . r
p ∨ (q ∨ r) :: (p ∨ q) ∨ r
p . (q . r) :: (p . q) . r
Association (Assoc):
Distribution (Dist):
p . (q ∨ r) :: (p . q) ∨ (p . r)
p ∨ (q . r) :: (p ∨ q) . (p ∨ r)
p . (q ∨ r) :: (p . q) ∨ (p . r)
p ∨ (q . r) :: (p ∨ q) . (p ∨ r)
Distribution (Dist):
Contraposition (Contra):
p ⊃ q :: ~ q ⊃ ~ p
p ⊃ q :: ~ q ⊃ ~ p
Contraposition (Contra):
Implication (Impl):
p ⊃ q :: ~ p ∨ q
p ⊃ q :: ~ p ∨ q
Implication (Impl):
Exportation (Exp):
(p . q) ⊃ r :: p ⊃ (q ⊃ r)
(p . q) ⊃ r :: p ⊃ (q ⊃ r)
Exportation (Exp):
Tautology (Taut):
p :: p . p
p :: p ∨ p
p :: p . p
p :: p ∨ p
Tautology (Taut):
Equivalence (Equiv):
p ≡ q :: (p ⊃ q) . (q ⊃ p)
p ≡ q :: (p . q) ∨ (~ p . ~ q)
p ≡ q :: (p ⊃ q) . (q ⊃ p)
p ≡ q :: (p . q) ∨ (~ p . ~ q)
Equivalence (Equiv):
Rules of Equivalence:
Bi-directional
Rules of Equivalence ______ be used with a single part of a statement
CAN