Limits Flashcards
sum rule: limₓ→c (f(x) + g(x)) =
limₓ→c (f(x)) + limₓ→c (g(x))
difference rule: limₓ→c (f(x) - g(x)) =
limₓ→c (f(x)) - limₓ→c (g(x))
product rule: limₓ→c (f(x) * g(x)) =
limₓ→c (f(x)) * limₓ→c (g(x))
constant multiple rule: limₖ→c (k * g(x)) =
k * limₓ→c (g(x))
quotient rule: limₓ→c (f(x) / g(x)) =
(limₓ→c (f(x)) / (limₓ→c (g(x))) provided limₓ→c (g(x)) ≠ 0
power rule: limₓ→c (f(x))^n =
(limₓ→c (f(x))^n for n
root rule: limₓ→c (n√f(x)) =
n√limₓ→c (f(x)) for n ≥ 2 a positive integer, provided n√limₓ→c (f(x)) and limₓ→c (n√f(x)) are real numbers
limit that fails to exist:
limₓ→₀ (|x| / x)
unbounded behavior:
limₓ→₀ (1/x^2) = doesn’t exist
oscilating behavior:
limₓ→₀ (1/x) = doesn’t exist
special limits (sin):
limₓ→₀ (sinx / x) = 1
special limits (cos):
limₓ→₀ (1 - cosx / x) = 0