integration formulas and other deriv. Flashcards
1
Q
(pythagorean identities) sin²x + cos²x=
A
1
2
Q
(pythagorean identities) sec²x=
A
1 + tan²x
3
Q
(pythagorean identities) csc²x=
A
1 + cot²x
4
Q
∫a^u du=
A
(1/lna)*a^u + C
5
Q
∫e^u du=
A
e^u + C
6
Q
∫sinu du=
A
-cosu + C
7
Q
∫cosu du=
A
sinu + C
8
Q
∫tanu du=
A
-ln|cosu| + C
9
Q
∫cotu du=
A
ln|sinu| + C
10
Q
∫secu du =
A
ln|secu + tanu| + C
11
Q
∫cscu du=
A
-ln|cscu + cotu| + C
12
Q
∫sec²u du=
A
tanu + C
13
Q
∫csc²u du=
A
-cotu + C
14
Q
∫secutanu du=
A
secu + C
15
Q
∫cscucotu du=
A
-cscu + C
16
Q
d/dx [logau]=
A
u’/(lna)u
17
Q
d/dx[a^u]=
A
(lna)a^u*u’
18
Q
d/dx[tanu]=
A
(sec^2u)u’
19
Q
d/dx[cotu]=
A
-(csc^2u)u’
20
Q
d/dx[secu]=
A
(secutanu)u’
21
Q
d/dx[cscu] =
A
-(cscucotu)u’
22
Q
d/dx[arcsinu]=
A
u’/√(1-u^2)
23
Q
d/dx[arccosu]=
A
-u’/√(1-u^2)
24
Q
d/dx[arctanu]=
A
u’/ (1 + u^2)
25
Q
d/dx[arccotu]=
A
-u’/ (1 + u^2)
26
Q
d/dx[arcsecu]=
A
u’/ |u|√(u^2-1)
27
Q
d/dx[arccscu]=
A
-u’/ |u|√(u^2-1)