Lecture 6 Flashcards
What is the derivative of R_sq(w_0, w_1)?
-2/n En i=1 (y_i - (w_0 + w_1x_i))
What is w_0*?
ybar - w_1* xbar
What is w_1*?
(En i =1 (y_i - ybar)x_i) / (En i=1 (x_i - xbar)x_i)
What is the equation for xbar?
1/n En i=1 x_i
What is the equation for ybar?
1/n En i=1 y_i
What are the least squares solution for w_1*?
(En i=1 (x_i - xbar)(y_i - ybar)) / (En i=1(x_i - xbar)^2)
What are the least squares solution for w_0*?
ybar - w_1*xbar
What do we call w_0* and w_1*? the optimal parameters
optimal parameters
What do we call the resulting line?
the regression line
What does “fitting to the data” mean?
the process of minimizing empirical risk to find the optimal parameters
What equation do we use to make predictions about the future?
H(x) = w_0 + w_1*x