LAPLACE/ Simple Fourier / Simple Z table Flashcards
LAPLACE TRANSFORM OF:
1
1 / s
LAPLACE TRANSFORM OF:
t^n
n! / ( s^[n+1] )
LAPLACE TRANSFORM OF:
√ t
(√π) / (2*s^0.5 )
LAPLACE TRANSFORM OF:
e^at
1 / (s - a)
SHIFTING THEOREM
LAPLACE TRANSFORM OF:
sin (at)
a / (s² + a²)
LAPLACE TRANSFORM OF:
cos (at)
s / (s² + a²)
LAPLACE TRANSFORM OF:
t*sin (at)
2as / (s² + a²)²
LAPLACE TRANSFORM OF:
t*cos (at)
(s² - a²) / (s² + a²)²
LAPLACE TRANSFORM OF:
sin (at + b)
[ssin(b) + acos(b)] / (s² + a²)
LAPLACE TRANSFORM OF:
cos (at + b)
[scos(b) - asin(b)] / (s² + a²)
LAPLACE TRANSFORM OF:
sinh (at)
a / (s² - a²)
LAPLACE TRANSFORM OF:
cosh (at)
s / (s² - a²)
LAPLACE TRANSFORM OF:
e^at) * sin (ωt
ω / ((s - a)² + ω²)
LAPLACE TRANSFORM OF:
e^at) * cos (ωt
(s - a) / ((s - a)² + ω²)
LAPLACE TRANSFORM OF:
e^at) * sinh (ωt
ω / ((s - a)² -ω²)
LAPLACE TRANSFORM OF:
e^at) * cosh (ωt
(s - a) / ((s - a)² - ω²)
LAPLACE TRANSFORM OF:
t^n ) * (e^at
n! / ( {s - a}^[n+1] )
LAPLACE TRANSFORM OF:
UNIT STEP
u(t - c)
[ e^(-cs) ] / s
LAPLACE TRANSFORM OF:
DIRAC DELTA
δ(t - c)
e^(-cs)
LAPLACE TRANSFORM OF:
f’(t)
s*F(s) - f(0)
LAPLACE TRANSFORM OF:
f’‘(t)
(s² * F(s)) - (s * f(0)) - (f’(0))
LAPLACE TRANSFORM OF:
∫ f(t) dt
F(s) / s
LAPLACE TRANSFORM OF:
f(t - a)
if laplace of f(t) is F(s),
Laplace of f(t - a)
e^(-a*s) * F(s)
TIME SHIFTING
Z TRANSFORM OF:
DIRAC DELTA
δ(n)
1
Z TRANSFORM OF:
UNIT STEP
u(n)
z / (z - 1)
Z TRANSFORM OF:
b^n
z / (z - b)
Z TRANSFORM OF:
n
z / (z - 1)²
FOURIER TRANSFORM OF:
DIRAC DELTA
δ(t)
1
FOURIER TRANSFORM OF:
DIRAC DELTA
δ(t - c)
e^(-iω*c)