Integration Flashcards
1
Q
Definite Integrals
- Area under the curve
- Answer is a _
A
Number
2
Q
Indefinite Integrals
- Antiderivative
- Sf(x)dx = _
- Answer is a _
A
F(x) + c, function
3
Q
sin0
A
-cos0
4
Q
csc0cot0
A
-csc0
5
Q
csc0csc0
A
-cot0
6
Q
U-Substitution of Trig Functions
- Use if inside
- Sfunction(x)dx
- u=x
- du/dx= _
- Sfunction(u)du
- Solve with _
A
Derivative of x, antiderivative
7
Q
First Fundamental Theorem
- f(x) is continuous on [a, b]
- S(ab)f(x)dx = _
A
F(b) - F(a)
8
Q
U-Substitution of Functions
- Use if inside
- Sf(x)dx
- u=x
- du/dx= _
- Sf(u)du
- Solve with _
- Make sure S(u1u2)
A
Derivative of x, antiderivative
9
Q
Piecewise Functions
- S(ab) |x + y|dx
- x + y = _
- (x function) and -(x function)
- Slit up integrals and _
A
0, add
10
Q
Second Fundamental Theorem
-d/dxS(ax)f(t)dt = _
A
f(x) = derivarive x f(x)
11
Q
sin^20 + cos ^20
A
1
12
Q
1 + tan^20
A
sec^20
13
Q
1 + cot^20
A
csc^20
14
Q
sin20
A
sin0cos0
15
Q
cos20
A
cos^20 - sin^20