Integration Flashcards
Integration by parts
∫ u dv = uv – ∫ v du
∫ lnx dx
xlnx – x + C
∫ sinx dx
–cosx + C
∫ cosx dx
sinx + C
∫ tanx dx
–ln |cosx| + C
∫ cotx dx
ln |sinx| + C
∫ secx dx
ln |secx + tanx| + C
∫ cscx dx
–ln |cscx + cotx| + C
∫ sin-1x dx
x sin-1x + √(1 – x2) + C
∫ cos-1x dx
x cos-1x – √(1 – x2) + C
∫ tan-1x dx
x tan-1x – 1/2 ln |x2 + 1| + C
∫ cot-1x dx
x cot-1x + 1/2 ln |x2 + 1| + C
∫ sec-1x dx
x sec-1x – sgnx ln |x + √(x2 – 1)| + C
∫ csc-1x dx
x csc-1x + sgnx ln |x + √(x2 – 1)| + C
∫a∞ ƒ(x) dx
limb→∞ ∫ab ƒ(x) dx
∫-∞b ƒ(x) dx
lima→-∞ ∫ab ƒ(x) dx
∫ab ƒ(x) dx =
If ƒ is discontinuous at x = c in [a, b]
limk→c+ ∫kb ƒ(x) dx + limk→c– ∫ak ƒ(x) dx
∫ du / √ ( 1 – u2 )
sin-1(u) + C
for u2 < 1
∫ du / ( 1 + u2 )
tan-1(u) + C
∫ du / ( u √( u2 – 1) )
sec-1(u) + C
for u2 > 1
∫ax dx
1 / lna ax + C