Integrals: Basic Forms Flashcards
2
Q
∫ u dv
A
uv - ∫ v du
3
Q
∫ u^n du
A
(u^(n+1))/(n+1), n != 1
ln u, n == 1
4
Q
∫ du/u
A
ln |u|
5
Q
∫ e^u du
A
e^u
6
Q
∫ a^u du
A
(a^u)/(ln a)
7
Q
∫ sin u du
A
-cos u
8
Q
∫ cos u du
A
sin u
9
Q
∫ sec^2 u du
A
tan u
10
Q
∫ csc^2 u du
A
-cot u
11
Q
∫ (sec u)(tan u) du
A
sec u
12
Q
∫ (csc u)(cot u) du
A
-csc u
13
Q
∫ tan u du
A
ln |sec u|
14
Q
∫ cot u du
A
ln |sin u|
15
Q
∫ sec u du
A
ln |sec u + tan u|
16
Q
∫ csc u du, uεR
A
ln |csc u – cot u|
Likes most if not all of these antiderivatives, this answer holds iff uεR. If u has an imaginary component, the antiderivative is:
ln(sin(u/2)) - ln(cos(u/2))