Common Derivatives Flashcards
derivative
d/dx c
0
derivative
d/dx x^n
nx^(n-1) , !(n = -1)
ln x , n = -1
derivative
d/dx sin x
cos x
derivative
d/dx cos x
-sin x
derivative
d/dx tan x
(sec x)^2
derivative
d/dx cot x
-(csc x)^2
derivative
d/dx sec x
(sec x)(tan x)
derivative
d/dx csc x
-(csc x)(cot x)
derivative
d/dx sin^-1 x
1/sqrt(1 - x^2)
-(d/dx cos^-1 x)
derivative
d/dx cos^-1 x
- 1/sqrt(1 - x^2)
- (d/dx sin^-1 x)
derivative
d/dx sec^-1 x
1/(|x|sqrt( x^2 - 1 ))
-(d/dx csc^-1 x)
derivative
d/dx csc^-1 x
- 1/(|x|sqrt( x^2 - 1 ))
- (d/dx sec^-1 x)
derivative
d/dx tan^-1 x
1/(1 + x^2)
-(d/dx cot^-1 x)
derivative
d/dx cot^-1 x
- 1/(1 + x^2)
- (d/dx tan^-1 x)
derivative
d/dx y^x
(y^x)(ln y)
derivative
d/dx log(a, x)
1/( x(ln a) )
derivative
d/dx e^(ax)
ae^(ax)
derivative
d/dx ln x
1/x
derivative
d/dx sinh x
cosh x
derivative
d/dx cosh x
sinh x
derivative
d/dx tanh x
(sech x)^2
derivative
d/dx csch x
-(csch x)(coth x)
derivative
d/dx sech x
-(sech x)(tanh x)
derivative
d/dx coth x
-(csch x)^2
derivative
hyperbolic functions whose differentiation formulas are analogous to their trigonometric function counterparts
sinh x
csch x
tanh x
coth x
derivative
hyperbolic functions whose differentiation formulas are analogous to their trigonometric function counterparts, but with the opposite sign
cosh x
sech x
derivative
analytic formula for sinh^-1 x
ln( x + sqrt( x^2 + 1)), x ε R
derivative
analytic formula for cosh^-1 x
ln( x + sqrt( x^2 - 1)), x >= 1
derivative
analytic formula for tanh^-1 x
(1/2) ln( (1+x) / (1-x) ), -1<1
derivative
d/dx cosh^-1 x
1/sqrt(x^2 - 1), x > 0
1/(sqrt(x - 1)sqrt(x + 1))
derivative
d/dx tanh^-1 x
1/(1 - x^2), |x| < 1
derivative
d/dx csch^-1 x
-1/(|x|sqrt(x^2 + 1))
derivative
d/dx sech^-1 x
-1/((x)sqrt(1 - x^2))
derivative
d/dx coth^-1 x
1/(1 - x^2), |x| > 1
d/dx sinh^-1 x
1/sqrt(x^2 + 1)
d/dx (y^x)/(ln x)
y^x