Integral rules Flashcards
1
Q
∫au^ndx =
A
(au^n+1)/n+1 + c
2
Q
∫(c+u)dx =
c = constant
A
∫(c)dx + ∫(u)dx + c
3
Q
∫(c)dx =
c = constant
A
cx + c
4
Q
∫(cu)dx =
A
c∫(u)dx
5
Q
∫(sin(x))dx =
A
-cos(x) + c
6
Q
∫(cos(x))dx =
A
sin(x) + c
7
Q
∫(sec^2(x))dx =
A
tan(x) +c
8
Q
∫(csc^2(x)dx =
A
-cot(x) + c
9
Q
∫(sec(x) ⋅ tan(x))dx =
A
sec(x) + c
10
Q
∫(csc(x) ⋅ cot(x))dx =
A
-csc(x) + c
11
Q
∫(e^n)dx =
A
e^n
12
Q
∫(1/x)dx =
A
ln|x|
13
Q
What is the fundamental theorem of calculus (FTC)?
A
(^a)(_b)∫f(x)dx = F(b) - F(a)
14
Q
d/dx[∫f(x)dx] =
A
f(x)
15
Q
What is sigma notation?
A
Lim(n->∞) Σf(xi)Δx