Derivative rules Flashcards
f’(x) of f(x) = u^n
nu^(n-1)
f’(x) of f(x) = g(x) + h(x)
g’(x) + h’(x)
f’(x) of f(x) = uv
u’v + v’u
f’(x) of f(x) = u/v
(u’v - v’u)/v^2
f’(x) of f(x) = sin(x)
cos(x)
f’(x) of f(x) = cos(x)
-sin(x)
f’(x) of f(x) = tan(x)
sec^2(x)
f’(x) of f(x) = cot(x)
-csc^2(x)
f’(x) of f(x) = sec(x)
sec(x) ⋅ tan(x)
f’(x) of f(x) = csc(x)
-csc(x) ⋅ cot(x)
f’(x) of f(x) = e^u
e^u ⋅ u’
f’(x) of f(x) = ln(x)
1/x
f’(x) of f(x) = u + v
u’ + v’
f’(x) of f(x) = (u)^n
n(u)^n-1 ⋅ u’
What is the linearization equation?
L(x) = f(a) + f’(a)(x-a)
f’(x) of f(x) = cosh(x)
sinh(x)
f’(x) of f(x) = sinh(x)
cosh(x)
f’(x) of f(x) = tanh(x)
sech^2(x)
f’(x) of f(x) = sech(x)
-sech(x)tanh(x)
f’(x) of f(x) = csch(x)
-csch(x)coth(x)
f’(x) of f(x) = coth(x)
-csch^2(x)