In-Cab Parts Flashcards
Describe the parts of the In-Cab Inspection
Safety Belt
A vehicle safety device designed to secure the driver or a passenger of a vehicle against harmful movement that may result during a collision or a sudden stop.
Fire Extinguisher
A handheld active fire protection device usually filled with a dry or wet chemical used to extinguish or control small fires, often in emergencies.
Reflective Triangles
Reflective triangles provide visibility for the truck and driver to other motorists during an emergency stop.
The first step is to turn on the four-way flashers before putting out emergency triangles.
Emergency triangles must be placed within 10 minutes of stopping and should be kept in the passenger side box so they can be accessed in a way that keeps the driver away from traffic.
The following are the most common emergency triangle placements for truck drivers
Two Lane (Traffic in both directions and undivided highways)
One triangle 100 feet in front of the vehicle, centered in the lane the vehicle occupies.
One triangle 10 feet behind the vehicle on the traffic side of the vehicle.
One triangle 100 feet behind the vehicle in the center of the lane the vehicle occupies.
Divided Highways and one-way roads
One triangle 10 feet behind the vehicle on the traffic side of the vehicle.
One triangle 100 feet behind the vehicle in the center of the lane the vehicle occupies.
One triangle 200 feet behind the vehicle in the center of the lane it occupies.
Obstructed views (hills and curves)
Place one triangle at least 100 feet ahead of the vehicle.
One triangle should be placed at least 10 feet behind the vehicle on the traffic side of the vehicle.
Move the rearmost triangle between 100 feet and 500 feet back down the road to provide ample warning (the maximum distance from the vehicle shall not exceed 500 feet)
Spare Fuses
The Department of Transportation (DOT) establishes minimum standards for commercial motor vehicles.
The regulations require emergency equipment on all power units.
Power units for which fuses are needed to operate any required parts and accessories must have at least one spare fuse for each type and size of fuse needed for those parts and accessories (49CFR 393.95(b)).
Ignition Key
The key of an ignition serves two purposes:
It ensures that only the person who carries the keys can start the car and drive it away, and it not only starts the engine but activates all the other electronic and mechanical systems in the vehicle.
Accessory mode
Accessory mode operates some accessories on battery power while the engine is turned off.
Anti-lock braking system
An anti-lock braking system (ABS) is a safety anti-skidding braking system used on aircraft and on some land vehicles such as cars, motorcycles, trucks, and buses.
ABS operates by preventing the wheels from locking up during braking, thereby maintaining tractive contact with the road surface and allowing the driver to maintain more control over the vehicle.
Early Antilock braking systems example (1920)
In 1920 the French automobile and aircraft pioneer Gabriel Voisin experimented with systems that modulated the hydraulic braking pressure on his aircraft brakes to reduce the risk of tire slippage, as threshold braking on aircraft is nearly impossible. These systems used a flywheel and valve attached to a hydraulic line that feeds the brake cylinders. The flywheel is attached to a drum that runs at the same speed as the wheel. In normal braking, the drum and flywheel should spin at the same speed. However, when a wheel slows down, then the drum would do the same, leaving the flywheel spinning at a faster rate. This causes the valve to open, allowing a small amount of brake fluid to bypass the master cylinder into a local reservoir, lowering the pressure on the cylinder and releasing the brakes. The use of the drum and flywheel meant the valve only opened when the wheel was turning. In testing, a 30% improvement in braking performance was noted, because the pilots immediately applied full brakes instead of slowly increasing pressure in order to find the skid point. An additional benefit was the elimination of burned or burst tires.
ABS 1928 - 1971
The first proper recognition of the ABS system came later with the German engineer Karl Wässel, whose system for modulating braking power was officially patented in 1928. Wässel, however, never developed a working product and neither did Robert Bosch who produced a similar patent eight years later.[5]
A similar braking system called Decelostat that used direct-current generators to measure wheel slippage was used in railroads in the 1930s.[7] By 1951, flywheel-based Decelostat was used in aircraft to provide anti skid in landings. The device was on trials first in the United States and later by the British.[8] In 1954, Popular Science revealed that there was preliminary testing of the Decelostat system to prevent car swirling on a heavy brake by the US car manufacturers in Detroit. However, there was no public information of the test results.[9]
By the early 1950s, the Dunlop Maxaret anti-skid system was in widespread aviation use in the UK, with aircraft such as the Avro Vulcan and Handley Page Victor, Vickers Viscount, Vickers Valiant, English Electric Lightning, de Havilland Comet 2c, de Havilland Sea Vixen, and later aircraft, such as the Vickers VC10, Hawker Siddeley Trident, Hawker Siddeley 125, Hawker Siddeley HS 748 and derived British Aerospace ATP, and BAC One-Eleven, and the Dutch Fokker F27 Friendship (which unusually had a Dunlop high pressure (200 Bar) pneumatic system in lieu of hydraulics for braking, nose wheel steering and landing gear retraction), being fitted with Maxaret as standard.[10] Maxaret, while reducing braking distances by up to 30% in icy or wet conditions, also increased tire life, and had the additional advantage of allowing take-offs and landings in conditions that would preclude flying at all in non-Maxaret equipped aircraft.
In 1958, a Royal Enfield Super Meteor motorcycle was used by the Road Research Laboratory to test the Maxaret anti-lock brake.[11] The experiments demonstrated that anti-lock brakes can be of great value to motorcycles, for which skidding is involved in a high proportion of accidents. Stopping distances were reduced in most of the tests compared with locked wheel braking, particularly on slippery surfaces, in which the improvement could be as much as 30%. Enfield’s technical director at the time, Tony Wilson-Jones, saw little future in the system, however, and it was not put into production by the company.[11]
A fully-mechanical system saw limited automobile use in the 1960s in the Ferguson P99 racing car, the Jensen FF, and the experimental all-wheel drive Ford Zodiac, but saw no further use; the system proved expensive and unreliable.
The first fully-electronic anti-lock braking system was developed in the late-1960s for the Concorde aircraft.
The modern ABS system was invented in 1971 by Mario Palazzetti (known as ‘Mister ABS’) in the Fiat Research Center and is now standard in almost every car. The system was called Antiskid and the patent was sold to Bosch who named it ABS.[12]
Modern ABS
Modern systems
Chrysler, together with the Bendix Corporation, introduced a computerized, three-channel, four-sensor all-wheel[13] ABS called “Sure Brake” for its 1971 Imperial.[14] It was available for several years thereafter, functioned as intended, and proved reliable. In 1969, Ford introduced an anti-lock braking system called “Sure-Track” to the rear wheels of the Lincoln Continental Mark III and Ford Thunderbird, as an option;[15] it became standard in 1971.[16] The Sure-Track braking system was designed with help from Kelsey-Hayes. In 1971, General Motors introduced the “Trackmaster” rear-wheel only[17] ABS as an option on their rear-wheel drive Cadillac models[18][19] and called the option the True-Track Braking System on the Oldsmobile Toronado.[20] In 1972, the option was made available in all Cadillacs. In 1971, Nissan offered an EAL (Electro Anti-lock System) developed by Japanese company Denso as an option on the Nissan President, which became Japan’s first electronic ABS.[21]
1971: The Imperial [22] became the first production car with a 4 wheel computer-operated anti-lock braking system. Toyota introduced electronically controlled anti-skid brakes on Toyota Crown.[23]
1971: First truck application: “Antislittamento” system developed by Fiat Veicoli Industriali and installed on Fiat truck model 691N1.[24]
1972: four-wheel-drive Triumph 2500 Estates were fitted with Mullard electronic systems as standard.[citation needed] Such cars were very rare however and very few survive today.
1976: WABCO began the development of the anti-locking braking system on commercial vehicles to prevent locking on slippery roads, followed in 1986 by the electronic braking system (EBS) for heavy-duty vehicles.[25]
1978: Mercedes-Benz W116 As one of the firsts, used an electronic four-wheel multi-channel anti-lock braking system (ABS) from Bosch as an option from 1978 on.
1982: Honda introduced electronically controlled multi-channel ALB (Anti Locking Brakes) as an option for the second generation of Prelude, launched worldwide in 1982. Additional info: the general agent for Honda in Norway required all Preludes for the Norwegian market to have the ALB-system as a standard feature, making Honda Prelude be the first car delivered in Europe with ABS as a standard feature. The Norwegian general agent also included a sunroof and other options to be standard equipment in Norway, adding more luxury to the Honda brand. However, the Norwegian tax system made the well-equipped car very expensive, and the sales suffered from high costs. From 1984 the ALB-system, as well as the other optional features from Honda, was no longer a standard feature in Norway.
In 1985 the Ford Scorpio was introduced to the European market with a Teves electronic system throughout the range as standard. For this the model was awarded the coveted European Car of the Year Award in 1986, with very favorable praise from motoring journalists. After this success, Ford began research into Anti-Lock systems for the rest of their range, which encouraged other manufacturers to follow suit.
Since 1987 ABS has been standard equipment on all Mercedes-Benz automobiles.[26] Lincoln followed suit in 1993.[27]
In 1988, BMW introduced the first motorcycle with an electro-hydraulic ABS: the BMW K100. Yamaha Introduced the FJ1200 model with optional ABS in 1991. Honda followed suit in 1992 with the launch of its first motorcycle ABS on the ST1100 Pan European. In 2007, Suzuki launched its GSF1200SA (Bandit) with an ABS. In 2005, Harley-Davidson began offering an ABS option on police bikes.
ABS Operation
Operation
The anti-lock brake controller is also known as the CAB (Controller Anti-lock Brake).[28]
Typically ABS includes a central electronic control unit (ECU), four wheel speed sensors, and at least two hydraulic valves within the brake hydraulics. The ECU constantly monitors the rotational speed of each wheel; if it detects the wheel rotating significantly slower than the speed of the vehicle, a condition indicative of impending wheel lock, it actuates the valves to reduce hydraulic pressure to the brake at the affected wheel, thus reducing the braking force on that wheel; the wheel then turns faster. Conversely, if the ECU detects a wheel turning significantly faster than the others, brake hydraulic pressure to the wheel is increased so the braking force is reapplied, slowing down the wheel. This process is repeated continuously and can be detected by the driver via brake pedal pulsation. Some anti-lock systems can apply or release braking pressure 15 times per second.
Because of this, the wheels of cars equipped with ABS are practically impossible to lock even during panic braking in extreme conditions.
The ECU is programmed to disregard differences in wheel rotative speed below a critical threshold because when the car is turning, the two wheels towards the center of the curve turn slower than the outer two. For this same reason, a differential is used in virtually all roadgoing vehicles.
If a fault develops in any part of the ABS, a warning light will usually be illuminated on the vehicle instrument panel, and the ABS will be disabled until the fault is rectified.
Modern ABS applies individual brake pressure to all four wheels through a control system of hub-mounted sensors and a dedicated micro-controller. ABS is offered or comes standard on most road vehicles produced today and is the foundation for electronic stability control systems, which are rapidly increasing in popularity due to the vast reduction in the price of vehicle electronics over the years.
Modern electronic stability control (ESC) systems are an evolution of the ABS concept. Here, a minimum of two additional sensors are added to help the system work: these are a steering wheel angle sensor and a gyroscopic sensor. The theory of operation is simple: when the gyroscopic sensor detects that the direction taken by the car does not coincide with what the steering wheel sensor reports, the ESC software will brake the necessary individual wheel(s) (up to three with the most sophisticated systems), so that the vehicle goes the way the driver intends. The steering wheel sensor also helps in the operation of Cornering Brake Control (CBC), since this will tell the ABS that wheels on the inside of the curve should brake more than wheels on the outside, and by how much.
ABS equipment may also be used to implement a traction control system (TCS) on the acceleration of the vehicle. If, when accelerating, the tire loses traction, the ABS controller can detect the situation and take suitable action so that traction is regained. More sophisticated versions of this can also control throttle levels and brakes simultaneously.
The speed sensors of ABS are sometimes used in indirect tire pressure monitoring system (TPMS), which can detect under-inflation of the tire(s) by the difference in the rotational speed of wheels.
ABS Components
Components
There are four main components of ABS: wheel speed sensors, valves, a pump, and a controller.
Speed sensors (Encoders)
A speed sensor is used to determine the acceleration or deceleration of the wheel. These sensors use a magnet and a Hall effect sensor, or a toothed wheel and an electromagnetic coil to generate a signal. The rotation of the wheel or differential induces a magnetic field around the sensor. The fluctuations of this magnetic field generate a voltage in the sensor. Since the voltage induced in the sensor is a result of the rotating wheel, this sensor can become inaccurate at slow speeds. The slower rotation of the wheel can cause inaccurate fluctuations in the magnetic field and thus cause inaccurate readings to the controller.
Valves
There is a valve in the brake line of each brake controlled by the ABS. On some systems, the valve has three positions:
In position one, the valve is open; pressure from the master cylinder is passed right through to the brake. In position two, the valve blocks the line, isolating that brake from the master cylinder. This prevents the pressure from rising further should the driver push the brake pedal harder. In position three, the valve releases some of the pressure from the brake.
Partially disassembled four-channel hydraulic control unit containing motor, pump and valves
The majority of problems with the valve system occur due to clogged valves. When a valve is clogged it is unable to open, close, or change position. An inoperable valve will prevent the system from modulating the valves and controlling pressure supplied to the brakes.
Pump
The pump in the ABS is used to restore the pressure to the hydraulic brakes after the valves have released it. A signal from the controller will release the valve at the detection of wheel slip. After a valve releases the pressure supplied from the user, the pump is used to restore the desired amount of pressure to the braking system. The controller will modulate the pump’s status in order to provide the desired amount of pressure and reduce slipping.
Controller
The controller is an ECU type unit in the car which receives information from each individual wheel speed sensor. If a wheel loses traction, the signal is sent to the controller. The controller will then limit the brake force (EBD) and activate the ABS modulator which actuates the braking valves on and off.