Gravity and Motion Flashcards
Projectile Motion, Inclined Planes, Circular Motion, Gravitational Forces and Field and Orbits
What component of SUVAT needs to be resolved in projectile motion?
Inital Velocity
Horizontal Motion
The velocity remains the same as the initital velocity throughout the motion
Maximum Height
When the projectile is at maximum height, vertical velocity is 0
Velocities
Horizontal and vertical velocities are at 90 degree angles to each other which is why they can be resolved to find initial velocities
Forces acting on an inclined planes
Normal force, weight, frictional force, applied force
What force needs to be resolved into components
The weight force, there is motion on the vertical component of the weight force (Fgcos) but none on the horizontal (Fgsin)
Normal Force Equation
mgcos-theta
Acceleration of Inclined Planes
gsin-theta
Fnet in inclined planes
All the forces acting on the object on the inclined plane
generally f=ma, f= fg + fn
Method of calculating forces on an inclined plane
Resolving all forces found into x and y components through a table or other
Uniform Circular Motion
Motion along a circular path in which there is no change in speed, only direction
constant velocity tangent to path, constant force towards centre
CM - Period
Time of one ‘cycle’
distance = rate x time
time = distance/rate
therefore, period = 2pir/v
Role of Tension in CM
Without tension, the object being flung around moves in a straight line. Tension changes the direction of the object
Centripetal Acceleration
Acceleration directs towards the centre of the circle
Ac = v (squared)/R
F = ma = mv(squared)/R
Conical Pendiulum
When a mass is moving in a horizontal circle of radius (R) at the end of the cord of length (L)
Tension is diagonal from the mass and can be resolved into horizontal and vertical components
Fnet is given by Tsintheta
Tsintheta = mv2/R
Tcostheta = mg
tan theta = v2/gR