Gene Expression Flashcards
Genome
All the genetic material in the chromosomes of an organism, including its genes and DNA sequences.
Coding and non-coding DNA
The DNA that comprises chromosomes (and on a smaller scale: genes) is often classified as either coding DNA or non-coding DNA.
Coding DNA
DNA that is both transcribed and translated (eg. the exon component of genes).
Non-coding DNA
DNA that is not both transcribed and translated. The function of much of the non-coding DNA is unknown. Non-coding DNA has many gene regulatory functions and species complexity probably lies in the non-coding sections of the genome rather than the coding sections. So, it plays an important role in a cell’s survival.
Major categories of non-coding DNA
Structural DNA
DNA sequences coding for Functional non-coding RNA
Introns
Regulatory DNA sequences
Structural DNA
eg. centromeres and telomeres which are not transcribed (are composed of repeating nucleotide sequences). This DNA helps to maintain the structure of chromosomes. (See the image below left)
DNA sequences coding for Functional non-coding RNA
eg. tRNA and rRNA which are transcribed but not translated (are made from DNA and move to cytoplasm)
Introns
DNA sections within genes - are transcribed but RNA copies are removed before mature mRNA leaves the nucleus ie. before translation.
Regulatory DNA sequences
eg. promotors, operator and enhancer sequences which influence the process of transcription
Protein Synthesis
Genes are mainly expressed via their DNA sequence being used to make a functional gene product. Functional gene products are either:
proteins (made via protein synthesis)
functional noncoding RNA (eg. tRNA or rRNA molecules which are used in protein synthesis).
Main molecules involved in protein synthesis
DNA and RNA (made of nucleotides).The other important type of molecule is protein (made of amino acids).
A triplet
three consecutive bases in DNA (eg. template strand)
A codon
three consecutive bases in mRNA
An anti-codon
three consecutive bases in a particular part of tRNA
Protein synthesis in eukaryotic cells
Transcription occurs in the nucleus and Translation in the cytoplasm at the ribosomes
Transcription occurs before Translation (pre-mRNA is modified in between)
Eukaryotic DNA does have introns.
Protein synthesis in prokaryotic cells
Both transcription and translation occur in the cytoplasm / cytosol (as their is no nucleus).
free floating ribosomes can attach to mRNA as it forms. Thus, translation and transcription occur at the same time.
prokaryotic DNA has no introns. Thus pre-mRNA modification does not need to occur.