Further Mechanics Flashcards
Describe motion in a circular path at a constant speed
Motion in a circular path at constant speed implies there is an acceleration and requires a centripetal force
Which direction does a Centripetal Force act
A centripetal force always acts towards the centre of the circle
What is Angular Speed
The angle an object moves through per unit time
What are the Equations for Angular Speed
ω = v / r
Angular Speed = Velocity / Distance
ω= 2πf
Angular Speed = 2π x Frequecny
What are the Equations for Centripetal Acceleration
a = v2 / r = ω2r
Acceleration = Velocity2 / Distance = Angular Speed2 X Distance
What are the Equations for Centripetal Force
F = mv2 / r = mω2r
Centripetal Force = Mass x Velocity2 / Distance = Mass x Angular Speed2 x Distance
When is an object experencing simple harmonic motion
When its acceleration is directly proportional to displacement from the equilibrium point and is in the opposite direction
What is the equation for accleration in simple harmonic motion
a = -ω2x
Accleration = - Angular Speed2 x Displacement
What is the equation for displacement in simple harmonic motion
x = A Cos(ωt)
Displacement = Amplitude x Cos(Angular Speed x Time)
What is the equation for velocity in simple harmonic motion
v = ± ± ω √(A2 - x2)
Velocity = ± Angular Speed √(Amplitude2 - Displacement2)
When are velocity and acceleration at their maximum and minimum on a pendulm
- Velocity Max = Centre
- Velcoity Zero = Amplitude
- Acceleration Max = Amplitude
- Accleration Zero = Centre
What are the equations for velocity max and acceleration max
- Vmax = ωA
- amax = ω2A
Describe the displacement-time graph of simple harmonic motion
Describe the Velocity-Time Graph of Simple Harmonic Motion
Describe the Acceleration-Time Graph of Simple Harmonic Motion