Fourier Series and PDES Flashcards
f : R→R is a periodic function if…
∃p >0 s.t. f(x+p) = f(x) ∀x∈R.
The smallest p for which f is p-periodic is called…
The prime period.
The periodic extension F : R→R of f: (α,α+p]→R is defined by…
F(x) = f(x−mp), where for each x∈R, m is the unique integer such that x−mp∈(α,α+p].
5 Properties of periodic functions: If f and g are p–periodic, then:
(1) f,g are np–periodic ∀n∈N{0};
(2) αf+βg are p–periodic ∀α,β∈R;
(3) fg is p–periodic;
(4) f(λx) is p/λ–periodic ∀λ >0;
(5) ᵖ∫₀ f(x) dx = ᵃ⁺ᵖ∫ₐ f(x) dx ∀α∈R.
f : R→R is odd if…
f(x) = −f(−x) ∀x∈R.
f : R→R is even if…
f(x) = f(−x) ∀x∈R.
4 Properties of odd/even functions: If f, f1 are odd and g, g1 are even, then:
(1) f(0) = 0;
(2) ᵃ∫₋ₐ f(x) dx = 0 ∀α∈R;
(3) ᵃ∫₋ₐ g(x) dx = 2ᵃ∫₀ g(x) dx ∀x∈R;
(4) fg is odd, ff1 is even, and gg1 is even.
Let f : R→R be a periodic function of period 2π. We say a Fourier expansion for f is of the form
f(x) ∼ a₀/2 + ∞∑ₙ₌₁(aₙcos(nx) +bₙsin(nx)).
What is a₀ of a 2π-periodic Fourier series for f(x)?
a₀ = 1/π ᵖᶦ∫₋ₚᵢ f(x) dx
Let m,n∈N{0}. Then we have the orthogonality relations:
ᵖᶦ∫₋ₚᵢ cos(mx)cos(nx) dx =
ᵖᶦ∫₋ₚᵢ cos(mx)sin(nx) dx =
ᵖᶦ∫₋ₚᵢ sin(mx)sin(nx) dx =
ᵖᶦ∫₋ₚᵢ cos(mx)cos(nx) dx = πδₘₙ
ᵖᶦ∫₋ₚᵢ cos(mx)sin(nx) dx = 0
ᵖᶦ∫₋ₚᵢ sin(mx)sin(nx) dx = πδₘₙ
where δₘₙ is Kronecker’s delta.
Prove what is aₘ of a 2π-periodic Fourier series for f(x), given the series. m =/= 0
ᵖᶦ∫₋ₚᵢ f(x)cos(mx) dx = 1/2 a₀ᵖᶦ∫₋ₚᵢ cos(mx) dx + ∞∑ₙ₌₁ (aₙᵖᶦ∫₋ₚᵢ cos(mx)cos(nx) dx + bₙᵖᶦ∫₋ₚᵢ cos(mx)sin(nx) dx)
giving ᵖᶦ∫₋ₚᵢ f(x)cos(mx) dx = 1/2 a₀·0 +∞∑ₙ₌₁(aₙπδₘₙ+bₙ·0) = πaₘ,
so that aₘ = 1/π ᵖᶦ∫₋ₚᵢ f(x)cos(mx) dx for m∈N{0}.
What is bₘ of a 2π-periodic Fourier series for f(x)? m =/= 0
bₘ = 1/π ᵖᶦ∫₋ₚᵢ f(x)sin(mx) dx for m∈N{0}.
What is the Fourier Sine series expansion for f(x)?
f(x) ∼ ∞∑ₙ₌₁ bₙsin(nx),
What does bₙ equal in a 2π-periodic Fourier Sine series for f(x)?
bₙ = 2/π ᵖᶦ∫₀ f(x)sin(nx) dx
What is the Fourier Cosine series expansion for f(x)?
f(x) ∼ 1/2 a₀ + ∞∑ₙ₌₁ aₙcos(nx),
What does aₙ equal in a 2π-periodic Fourier Cosine series for f(x)?
aₙ = 2/π ᵖᶦ∫₀ f(x)cos(nx) dx
The right-hand limit of f at c is…
f(c₊) = lim₍ₕ→₀, ₕ>₀₎ f(c+h) if it exists.
The left-hand limit of f at c is…
f(c₋) = lim₍ₕ→₀, ₕ
f is continuous at c iff…
f(c₋) = f(c) = f(c₊).
f is piecewise continuous on (a,b)⊆R if…
There exists a finite number of points x₁,…,xₘ∈R with a = x₁< x₂< … < xₘ = b such that:
(i) f is defined and continuous on (xₖ, xₖ₊₁) for all k = 1,…,m−1;
(ii) f(xₖ₊) exists for k = 1,…,m−1;
(iii) f(xₖ₋) exists for k = 2,…,m.
What is the Fourier Convergence Theorem?
Let f : R→R be 2π-periodic, with f and f′ piecewise continuous on (−π, π). Then, the Fourier coefficients
aₙ = 1/π ᵖᶦ∫₋ₚᵢ f(x)cos(nx) dx (n∈N),
bₙ = 1/π ᵖᶦ∫₋ₚᵢ f(x)sin(nx) dx for n∈N{0} exist,
and 1/2 (f(x₊) + f(x₋)) = a₀/2 + ∞∑ₙ₌₁(aₙcos(nx) + bₙsin(nx)) for x∈R.
[Proof not examinable, so fun times :-) ]
Say the Fourier Convergence Theorem is true for 2π periodic f, then what is the formula for g, the even part of f, and h, the odd part of f. and their repective fourier series?
g(x) = 1/2 (f(x) + f(−x)) h(x) = 1/2 (f(x) − f(−x))
1/2 (g(x₊) + g(x₋)) = a₀/2 + ∞∑ₙ₌₁aₙcos(nx), for x∈R,
1/2 (h(x₊) + h(x₋)) = ∞∑ₙ₌₁bₙsin(nx) for x∈R,