Formulaire de Trigonométrie Flashcards
cos(0)
1
cos(π/6)
√(3)/2
cos(π/4)
√(2)/2
cos(π/3)
1/2
cos(π/2)
0
cos(2π/3)
-1/2
cos(π)
-1
cos(3π/2)
0
cos(2π)
1
sin(0)
0
sin(π/6)
1/2
sin(π/4)
√(2)/2
sin(π/3)
√(3)/2
sin(π/2)
1
tan(0)
0
tan(π/6)
1/√(3)
tan(π/4)
1
tan(π/3)
√(3)
tan(π/2)
+∞
cos(θ + π/2)=
−sinθ
sin(θ + π/2)=
cosθ
cos(π/2 −θ)=
sinθ
sin(π/2 −θ)=
cosθ
cos(π−θ) =
−cosθ
sin(π−θ) =
sinθ
cos(θ + π) =
−cosθ
sin(θ + π) =
−sinθ
cos(−θ) =
cosθ
sin(−θ) =
−sinθ
cos2 x + sin2 x =
1
1 + tan² x =
1 / cos² x
cos(a−b) =
cosacosb + sinasinb
cos(a + b) =
cosacosb−sinasinb
sin(a−b) =
sinacosb−cosasinb
sin(a + b) =
sinacosb + cosasinb
cos(2a) =
2cos²(a)−1 = cos²(a)−sin²(a) = 1−2sin²(a)
sin(2a) =
2sinacosa
cos²(x) =
(1 + cos(2x))/2
sin2 x =
sin²(x) =(1−cos(2x))/2
cos(u)=cos(v)
⟺(u=v [2π] ou u=-v [2π])
sin(u)=sin(v)
⟺(u=v [2π] ou u=π-v [2π])
tan(u)=tan(v)
⟺(u=v [π])
cosp + cosq =
2cos((p + q) /2 ) cos((p−q)/2)
cosp−cosq =
−2sin((p + q)/2) sin((p−q)/2)
sinp + sinq =
2sin((p + q)/2) cos((p−q)/2 )
sinp−sinq =
2sin((p−q)/2) cos((p + q)/2 )
cosacosb =
1/2[cos(a + b) + cos(a−b)]
sinasinb =
1 /2[cos(a−b)−cos(a + b)]
sinacosb =
1/2[sin(a + b) + sin(a−b)]
tan((π/2)-x)=
cotan(x)
tan((π/4)+h)=
cotan((π/4)-h)