Föreläsning 7 (Neural networks 1) Flashcards
What is the artificial analogy of this feature of biological neural nets:
Each neuron sends one electric
pulse
Input neurons
What is the artificial analogy of this feature of biological neural nets:
Electrical pulse from the input
neuron is passed on
(propagated) through axon &
axon terminals
Connections
What is the artificial analogy of this feature of biological neural nets:
Strength of synapses
determine influence of
input signals on action
potential
Weights
What is the artificial analogy of this feature of biological neural nets:
Neuron receiving electrical pulse
Output neurons
What is the artificial analogy of this feature of biological neural nets:
Electrical activity in the
soma that if above a
”threshold” outputs an
electric pulse
Activation function
What is the simplest type of ANN?
Single-layer perceptron
What is the formula to calculate activation value based on the dot product?
𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2
x=input value, w=weights
(detta är för exempel 2 inputneuroner, men man plussar alltså summan av input * vikt för alla neuroner)
How do you know if you need to update the weights?
1) Compare:
* network output y (ANN prediction), to
* expected output t (ANN target)
2) Update:
* the weights update of the network is
proportional to the network error (t – y)
If the network is working as predicted you don’t need to update the weights!
What problems can a SLP solve?
Simpler classification and regression tasks (supervised learning)
Vilka två alternativ kan vi välja mellan att träna enkla ANN:s med?
- Manually select the weight values
ourselves - Use a learning /training rule
Vad är inlärningsregeln för perceptroner?
w’ = w + αx(t-y)