Final Exam Flashcards
sin²(x)
1 - cos²(x)
1/2[1 - cos(2x)]
cos²(x)
1 - sin²(x)
1/2[1 + cos(2x)]
sec²(x)
1 + tan²(x)
tan²(x)
sec²(x) - 1
1 - cos(2x))/(1 + cos(2x)
csc²(x)
1 + cot²(x)
cot²(x)
csc²(x) - 1
Pythagorean Identities
sin²(x) + cos²(x) = 1
1 + tan²(x) = sec²(x)
1 + cot²(x) = csc²(x)
sin(a + b)
sin(a)cos(b) + sin(b)cos(a)
sin(a - b)
sin(a)cos(b) - sin(b)cos(a)
cos(a + b)
cos(a)cos(b) - sin(a)sin(b)
cos(a - b)
cos(a)cos(b) + sin(a)sin(b)
tan(a + b)
(tan(a) + tan(b))/(1 - tan(a)tan(b))
tan(a - b)
(tan(a) - tan(b))/(1 + tan(a)tan(b))
Sum and Difference Formulas
sin(a + b) = sin(a)cos(b) + sin(b)cos(a)
sin(a - b) = sin(a)cos(b) - sin(b)cos(a)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = (tan(a) + tan(b))/(1 - tan(a)tan(b))
tan(a - b) = (tan(a) - tan(b))/(1 + tan(a)tan(b))
sin(2x)
2sin(x)cos(x)
cos(2x)
cos²(x) - sin²(x)
2cos²(x) - 1
1 - 2sin²(x)
tan(2x)
(2tan(x))/(1 - tan²x)
Double Angle Formulas
sin(2x) = 2sin(x)cos(x) cos(2x) = cos²(x) - sin²(x) cos(2x) = 2cos²(x) - 1 cos(2x) = 1 - 2sin²(x) tan(2x) = (2tan(x))/(1 - tan²x)
Product to Sum Formulas
sin(a)sin(b) = 1/2[cos(a - b) - cos(a + b)] cos(a)cos(b) = 1/2[cos(a - b) + cos(a + b)] sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)] cos(a)sin(b) = 1/2[sin(a + b) - sin(a - b)]
Circular Function Definitions
0 < Ɵ < π/2 sin(Ɵ) = y/r cos(Ɵ) = x/r tan(Ɵ) = y/x csc(Ɵ) = r/y sec(Ɵ) = r/x cot(Ɵ) = x/y
Right Triangle Definitions
sin(Ɵ) = opp/hyp cos(Ɵ) = adj/hyp tan(Ɵ) = opp/adj csc(Ɵ) = hyp/opp sec(Ɵ) = hyp/adj cot(Ɵ) = adj/opp
√(a² - b²x²)
x = (a/b)sin(Ɵ)
1 - sin²(Ɵ) = cos²(Ɵ)
√(a² + b²x²)
x = (a/b)tan(Ɵ)
1 + tan²(Ɵ) = sec²(Ɵ)
√(b²x² - a²)
x = (a/b)sec(Ɵ)
sec²(Ɵ) -1 = tan²(Ɵ)
d/dx(sin(x))
cos(x)