Convergence Tests Flashcards
Divergence Test
lim n→ ∞ aₙ = L
- if L ≠ 0 Σ aₙ diverges
- if L = 0 test is inconclusive
P-Series
aₙ = 1/(nᴾ), n ≥ 1
if p > 1 Σ aₙ converges
if p ≤ 1 Σ aₙ diverges
Geometric Series
aₙ = arⁿ⁻¹, n ≥ 1
if |r| < 1 Σ (n = 1, ∞) aₙ = a/ (1-r)
if |r| ≥ 1 Σ aₙ diverges
Alternating Series
aₙ = (-1)ⁿbₙ or aₙ = (-1)ⁿ⁺¹bₙ, b ≥ 0 Requirements: 1. bₙ₊₁ ≤ bₙ 2. lim n→ ∞ bₙ = 0 (Divergence Test) Σ aₙ converges
Telescoping Series
If subsequent terms cancel out previous terms in the sum. You may have to use partial fractions, properties of logarithms, etc. to put in appropriate form.
lim n→ ∞ sₙ = s
1. if s is finite Σ aₙ = s
2. if s isn’t finite Σ aₙ diverges
Comparison Test
Pick {bₙ}
- if Σ bₙ converges and 0 ≤ aₙ ≤ bₙ then Σ aₙ converges
- if Σ bₙ diverges and 0 ≤ bₙ ≤ aₙ then Σ aₙ diverges
Limit Comparison Test
Pick {bₙ}
1. lim n→ ∞ aₙ / bₙ = c where c > 0 and c is finite
2. aₙ, bₙ > 0
If Σ (n = 1, ∞) bₙ converges Σ aₙ converges
If Σ (n = 1, ∞) bₙ diverges Σ aₙ diverges
Integral Test
aₙ = f(n) Requirements for [a,∞): 1. f(x) is continuous 2. f(x) is positive 3. f(x) is decreasing if ∫ (a,∞) f(x) converges Σ (n = a, ∞) aₙ converges if ∫ (a,∞) f(x) diverges Σ aₙ diverges
Ratio Test
lim n→ ∞ |aₙ₊₁/aₙ| = L
- If L < 1 Σ aₙ absolutely converges
- if L = 1 test is inconclusive
- if L > 1 Σ aₙ diverges
Root Test
lim n→ ∞ ⁿ√|aₙ| = L
- If L < 1 Σ aₙ absolutely converges
- if L = 1 test is inconclusive
- if L > 1 Σ aₙ diverges
If c is a real, positive number, that the limit of the sequence c¹/ ⁿ →
1
If c is a real, positive number, then 1/nᶜ →
0
cⁿ/n! →
0
n¹/ ⁿ →
1
(1 + c/n)ⁿ →
eᶜ