Equations & Units Flashcards
force
N (mass*accel)
kg.m / s^2
energy
J
N.m
kg.m^2 / s^2
power
W
J/s
kg.m^2 / s^3
pressure (or stress)
Pa
N/m^2
J/m^3
kg / m.s^2
mass flux [units]
kg / m^2.s
dynamic viscosity [units]
kg / m.s
Pa.s
kinematic viscosity [units]
m^2 / s (dynamic visc. / density)
diffusion; time as a function of κ [eq]
t = d^2 / κ
thermal energy, E [eq, x2]
E ~ (3/2)kT (k = Boltzmann)
E ~ m c_p ΔT
gas diffusivity, κ [eq]
κ ~ vλ
sound speed, v [eq]
v ~ (E_c / m)^1/2
where m ~ molar mass / N_Av
(E_c = binding energy)
diffusivity [units]
m^2 / s
energy of a photon, E [eq]
E ~ hf
h = Planck’s C, 10^-33
Boltzmann distribution for T, P(T) [eq]
P ~ e^-(E/kT)
thermal conductivity, k [eq]
k ~ κρ c_p
κ = thermal diffusivity
thermal conductivity, k [units]
W / m.K
latent heat as a fxn of binding energy
units: J/kg
L ~ E / (μ / N_Av) ~ E * N_Av / μ
specific heat, c_p [eq]
3R/μ
diffusion as a fxn of sound speed [eq]
κ ~ vL
gases: L ~ λ (1e-7 m)
solids/liquids: L ~ a (atomic spacing, 1e-10 m)
(Note: this doesn’t work for mass diffusion in liquids due to translational v. rotational, etc. kinetic energy… it’s ~100x less, around κ ~ 10^-9 m2/s)
adiabatic cooling [eq, plus process]
-ΔT/Δz ~ g / c_p
from equating PE & TE: mgΔz~m c_p ΔT
specific heat, c_p [units]
J/kg.K
conductive heat flux (via Fourier’s law)
F ~ -k(ΔT/Δx)
heat flux [units]
W/m^2 (or J/m^2.s)
heat production [eq]
H ~ ρ c_p (ΔT/Δt)
heat production [units]
W/m^3
equation relating heating rate, conduction, heat production [eq]
ρ c_p (T/t) ~ k(T/d^2) + H
advective heat flux
F ~ u ΔT c_p ρ
equation relating heating rate, advection, conduction, heat production [eq]
(ΔT/Δt) + u(ΔT/Δd) ~ κ (ΔT / Δd^2) + H/(ρ c_p)