Electrodynamics Flashcards
Monopole term
Vmon(r) = 1/(4pi eps0) Q/r
Dipole term
Vdip(r) = 1/(4pi eps0) (p*r^)/r^2
Dipole moment
p = int(r’ rho(r’) dtau’)
Dipole moment of an atom in an electric field
p = alpha E
Atomic polarizability of a spherical atom
alpha = 4pi eps0 a^3 = 3 eps0 v
Continuity equation (charge)
drho/dt = - div J
Total energy stored in EM fields
u = 1/2(eps0 E^2 + 1/mu0 B^2)
Poynting vector
S = 1/mu0 (E x B)
Work done on charges
dW/dt = - d/dt int( u dtau) - (S * da)
Continuity equation (energy)
du/dt = - div S (only valid if no work is done)
Maxwell stress tensor
Tij = Eps0 (EiEj - 1/2 delt_ij(E^2)) + 1/mu0(BiBj - 1/2 delt_ij(B^2))
Force per unit volume
f = div T - eps0 mu0 dS/dt
Momentum density
g = mu0 eps0 S = eps0 (E x B)
Continuity equation (EM momentum)
dg/dt = div T
Angular momentum
l = r x g
General solution to Laplace eq. in spherical coordinates
V = sum(A_l r^l + B_l/(r^(l+1)) P_l(cos theta)
Torque on a dipole in a field
N = p x E
Bound surface charge
sig_b = P * n^
Bound volume charge
rho_b = - div P
Electric displacement
D = eps_0 E + P = eps E