Distribución Barometrica/Teorema de la Equipartición de la Energía/Funcion de Partición Flashcards

1
Q

Cómo se expresa la energía de una molécula?

A

Se expresa en los tipos de energía que tiene

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Cómo se expresa la energía de una molécula monoatómica?

A

Solo se expresa con la energía cinética
E=½mv²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

De qué otra forma de puede expresar la v en la energía de una molécula monoatómica?

A

En términos de su velocidad x,y,z
E=½m(vx)²+½m(vy)²+½m(vz)²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Si multiplicamos por la masa y dividimos por la masa (1) qué obtenemos

A

E=½(m²/m)(vx)²+½(m²/m)(vy)²+½(m²/m)(vz)²
El momento lineal P=mv
E=½(Px)²/m+½(Py)²/m+½(Pz)²/m

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Cómo se expresa la energía de una molécula diatómica?

A

En función de la energía cinética, energía de rotación y energía de vibración
E=Ec+Erot+Evib

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Cómo se vería la energía cinética de una molécula diatómica?

A

Ec=½(Px)²/m+½(Py)²/m+½(Pz)²/m
P: Momento lineal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Cómo se vería la energía de rotación de una molécula diatómica?

A

La rotación en el eje z no contribuye
Erot=½I(Wx)²+½I(Wy)²
I: Momento de inercia
W: Velocidad angular

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Si multiplicamos por I, y dividimos entre I la energía rotacional?

A

Erot=½(I²/I)(Wx)²+½(I²/I)(Wy)²
El momento angular L=IW
Erot=½(Lx)²/I+½(Ly)²/I

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Cómo se vería la energía de vibración de una molécula diatómica?

A

Tiene un modo de vibración que hace que la molécula se haga más estrecha y otro que hace que sea más alargada
Evib=½k(z1)²+½(z2)²
k: Constante

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Cuál es la expresión de equipartición de la energía y qué nos dice?

A

Nos dice que cada grado de libertad de las moleculas contribuyen en el energía interna total del sistema.

<E>=(f/2)(KB)T
f: Grados de libertad que acompañan el sistema
KB: Constante de Boltzmann
</E>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

La función de partición qué dice?

A

Nos dice la población de moléculas en el nivel i de energía
Ni=AΣgi(e^(-β•Ei))
Ni: Población de moléculas en el nivel i de la energía
β=1/KB•T
gi: Estados cuánticos asociados a la energía Ei
Ei: Energía

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Considera un valor de z para eliminar A?

A

z=Σgi(e^(-β•Ei))
Si A=N/z
Ni=(N/z)gi(e^(-β•Ei))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Cómo se vería la energía interna relacionada con la función de partición?

A

U=N•KB•T²((∂/∂T)ln(z))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly