Derivative Rules Flashcards
Which two derivative functions are identity functions?
D(0), D(e^x)
D(0)
0
D(e^x)
e^x
Power Rule
D(x^n) = nx^(n-1)
D(c)
0
D(2)
0
Product Rule
D[f(x)g(x)] = f(x)g’(x) + g(x)f’(x)
Quotient Rule
D[f(x)/g(x)] = (g(x)f’(x) - f(x)g’(x))/([g(x)]^2)
Define e
lim n-inf ((1+(x/n))^n)
How do you find intervals of increase/decrease?
- Find f’
- Find where f’=0
- Use sign chart
If there are no intervals, then how do you know if f’>0 or f’<0?
Set x to a value and solve for f’. If that value is >0, then all x values will be >0 due to the IVT.
Equation for objects in free fall
h(t)=-0.5gt^2 + v_0t + s_0
h:height(positin)
t:time
V_0:Initial velocity
S_0:Initial position
g:gravitational constant
Theorem for f’(x)=0
- f’(x) = 0 when: f(x) is at a smooth rel. min/max
- when f increases over (a,b), then f’>0 over (a,b)
- when f decreases over (a,b), then f’<0 over (a,b)
Limit definition using h
lim_(h-0) ((f(x+h) - f(x))/h)
Limit definition using x and a
lim_(x-a) (f(x) - f(a))/(x-a)
Finding impact velocity
- Find time when object returns to ground
- Use v(t), which equals h’(t)
D(sin x)
cos x
D(cos x)
-sin x
D(tan x)
sec^2 x
D(csc x)
-csc x cot x
D(sec x)
sec x tan x
D(cot x)
-csc^2 x