Defining Motor Speech Disorders Flashcards

1
Q

Neurologic process of speech production involves (3):

A
  1. Cognitive-Linguistic Process (Aphasia)
  2. Motor Speech Programming (apraxia)
  3. Neuromuscular Execution (dysarthria)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Cognitive-Linguistic Process –

A

the aspect of speech production involving an intention to communicate which is organized into the verbal symbols that follow the rules of language. (Aphasia)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Motor Speech Programming –

A

the intended communication has to be executed by the neuromuscular system. To do this the speaker selects and organizes the sensorimotor programs that cause the appropriate speech muscles to be activated at the right time. This is the speech programming process. (apraxia)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Neuromuscular Execution –

A

The CNS and PNS innervate the necessary muscles of respiration, phonation, articulation and resonance to produce desired words. (dysarthria)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Motor Speech Disorders:

A

Disorders of speech resulting from neurologic impairment affecting the motor programming or neuromuscular execution of speech (2):

  • apraxia of speech
  • the dysarthrias
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Types of Motor Speech Disorders (2)

A

Dysarthria & Apraxia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Dysarthria:

A

Collective name for group of motor speech disorders resulting from disturbances in muscular control over the speech mechanism due to damage of the CNS or PNS.

Can result in paralysis, weakness, or incoordination of speech musculature.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Dysarthria can affect which speech subsystems (5)?

A

All speech subsystems:

  1. Respiration
  2. Phonation
  3. Resonance
  4. Articulation
  5. Prosody
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Site of lesion for Dysarthria:

A

CNS
or
PNS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Types of Dysarthria – developed by Darley, Aronson & Brown (6)

A
  1. Flaccid
  2. Spastic
  3. Ataxic
  4. Hypokinetic
  5. Hyperkinetic
  6. Mixed
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Apraxia:

A

Neurogenic speech disorder resulting from impairment of the capacity to program sensorimotor commands for the positioning and movement of muscles for volitional production of speech.

Occurs in the absence of weakness.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Can apraxia and dysarthria co-occur with aphasia?

A

Yes, both apraxia and dysarthria can co-occur with aphasia

BUT apraxia more commonly co-occurs with aphasia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Apraxia of speech can affect which subsystems of speech (2)?

A
  1. Articulation – may be inconsistent errors (?), difficulty with initiating speech
  2. Prosody – due to starting and stopping in self-correcting
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Does the course of motor speech disorders depends on etiology?

A

Yes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Course of disease for motor speech disorders (5):

A
  1. Transient – symptoms don’t last, they disappear completely
  2. Improving – things are improving but some symptoms are still there – just not as severe.
  3. Progressive – symptoms don’t get better, they continue to get worse or new symptoms appear.
  4. Exacerbating-remitting – symptoms occur, then get better, then occur again; gets worse, then better, etc.
  5. Stationary – symptoms remain unchanged after they have reached maximum severity.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Treatment of motor speech disorders…

A

varies depending on type of dysarthria

i.e. for progressive course goals will be different than for developmental or transient

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

How do symptoms develop for motor speech disorders?(3 types)

A
  1. Acute – comes on quickly within minutes
  2. Subacute – comes on within days
  3. Chronic – comes on within months
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Most motor speech disorders are associated with…

A

chronic disorders

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

The Central Nervous System includes:

A
  1. Brain
    • Cerebrum
    • Brain stem
    • Cerebellum
  2. Spinal cord
    * areas encased by bone
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

4 Lobes of the cerebrum:

A

Frontal lobe
Parietal lobe
Temporal lobe
Occipital lobe

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

The cerebrum is made up of:

A

Cortex – outer layer (bark)
Gyri – ridges
Sulci - valleys

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

The Cerebellum’s job:

A

Modifing cortical activity

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

The 3 lobes of the cerebellum are:

A
  1. anterior
  2. posterior
  3. flocculonodular
  • Has 2 hemispheres, right and left
  • Vermis – midportion
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

3 Parts of the brain stem:

A

Midbrain – links cerebrum to brain stem page 41
Pons – bridges to cerebellum
Medulla – controls respiration

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Midbrain (place):
links cerebrum to brain stem
26
Pons (place):
bridges to cerebellum
27
Medulla (function):
controls respiration
28
Are the bones of the skull separated or fused?
Fused -protective device- also hampers at times when expansion needed
29
4 anatomic levels of the CNS:
1. Supratentorial 2. Posterior 3. Spinal 4. Peripheral
30
Supratentorial level of the CNS:
Made up of anterior & middle fossae Contains the paired frontal, temporal, parietal & occipital lobes AND basal ganglia, thalamus, hypothalamus & cranial nerves I & II
31
Posterior level of the CNS:
Made up of posterior fossa Contains brainstem, cerebellum & cranial nerves III-XII.
32
Fossae –
3 cavities in base of skull Fossa – ditch
33
Foramina
Holes in fossae where cranial nerves exit skull
34
Where do cranial nerves II-XII originate?
In brain stem at the posterior fossa level
35
Where do cranial nerves I + II originate?
In the supratentorial level | Cranial nerves important for speech originate at this level, but are part of the PNS.
36
Are cranial nerves part of the CNS or the PNS?
PNS but, they originate at the supratentorial (I + II) or Posterior level (III-XII) of the CNS
37
Spinal level of the CNS:
Spinal cord begins at lower end of medulla, surrounded by bony vertebral column Spinal cord ends at first lumbar vertebrae.
38
Peripheral level of the CNS:
12 pairs of cranial nerves 31 pairs of spinal nerves exit skull through foramina.
39
Why is it important for speech to have pairs (left + right) of cranial nerves?
Protection
40
Where do cranial nerves emerge from?
base of brain (brainstem) and penetrate skull through foramina to reach sensory - motor targets
41
Meninges (covering of the CNS) consist of 3 layers:
1. Dura mater-outer membrane -2 layers fused together 2. Arachnoid mater - below dura, loosely covers brain 3. Pia mater-innermost layer, closely attached to surface of brain
42
Spaces around the meninges (3):
1. Epidural space-between dura and bone 2. Subdural space-beneath dura (infection can develop in these 2 spaces due to trauma, blood & pus pool here) 3. Subarachnoid space-beneath arachnoid –filled with CSF, connected to inner part of brain via ventricular system
43
Neurologic Systems (6):
1. Ventricular 2. Vascular 3. Neurochemical systems 4. Consciousness system 5. Motor system 6. Sensory system
44
Ventricular Neurologic System:
Also called Cerebrospinal system Ventricles are cavities filled with CSF (cushions brain) produced by choroid plexuses (structures in each ventricle) Consist mainly of - paired lateral ventricles in each hemisphere, third ventricle between the 2 thalami & 4th ventricle
45
Vascular Neurologic System:
Involves blood vessels-provides oxygen and nutrients to structures & removes waste. Brain receives blood from 2 arterial systems, carotid and vertebral basilar system These join at Circle of Willis at base of brain. Vascular disturbances can cause motor speech disorders
46
Neurochemical systems:
Influences all anatomic levels of nervous system. Includes amino acids, ACH, neuropeptides, etc.
47
Consciousness system:
Important for maintaining consciousness, attention & awareness of environment. Structures involved in this level include those found at supratentorial & posterior fossae level. Damage can result in motor speech disorders.
48
Motor system:
Responsible for all motor activity including that of speech. Includes efferent connection to cortex, basal ganglia, cerebellum, CNS/PNS pathways. Damage here can cause motor speech disorders.
49
Sensory system:
Includes peripheral receptor organs
50
Structural elements of Neurons
1. Dendrites 2. Axons 3. Cell body (soma)
51
Dendrites:
Transmit sensory information toward the soma
52
Axons:
Transmit information away from the soma Axons end in synapses which release neurotransmitters Axons = collection of many nerve fibers
53
Most important neurotranmitter for muscles contraction?
AcH | Release of AcH results in contraction of muscle fiber
54
Nerves:
Groups of fibers traveling together in PNS
55
Where are cell bodies located?
Cell bodies stay in CNS
56
Where do nerves travel?
Between cell bodies and peripheral end organ to be innervated
57
In CNS, groups of fibers are called:
pathways or tracts
58
Where are impulses carried to in the CNS?
pathways/tracts carry impulses to other neurons
59
Where are impulses carried to in the PNS?
impulse is carried to the end organs
60
Motor Unit:
Made up of the axon and the muscle fiber it innervates
61
Supporting (Glial) Cells (3):
1. Oligdendroglia cells-form myelin in CNS 2. Schwann cells – form myelin in PNS. (between myelin in both are spaces called Nodes of Ranvier.) 3. Astrocytes- found in CNS –help move substances between blood and neurons of CNS – part of blood-brain barrier that keeps toxins from brain.
62
Oligdendroglia cells (type of glial cell):
form myelin in CNS
63
Schwann cells (type of glial cell):
form myelin in PNS
64
Spaces between myelin in CNS and PNS:
Nodes of Ranvier
65
Astrocytes (type of glial cell):
found in CNS help move substances between blood and neurons of CNS – part of blood-brain barrier that keeps toxins from brain
66
How can a neuron be damaged?
lack of oxygen (ischemia) caused by disruption in blood supply
67
When axons are separated from cell body it causes...
motor speech problems
68
If lower motor neuron innervation to muscle is lost...
muscle will atrophy
69
What are some pathological reactions to neurons, axons, myelin, and lower motor neurons (5)?
1. Neuron can be damaged due to lack of oxygen (ischemia) caused by disruption in blood supply. 2. Axons may be separated from cell body resulting in motor speech problems. 3. If lower motor neuron innervation to muscle is lost – muscle will atrophy. 4. Myelin can shrink due to injuries 5. Certain diseases attack myelin, i.e. multiple sclerosis & Guillain Barre dz. Causes demyelination
70
Thalamus:
Paired structures deep inside brain Acts as relay station Helps to mediate speech, language & cognitive function Also integral part of motor control system
71
Basal Ganglia:
Located deep inside cerebrum Consists of # of related structures Important part of motor speech system
72
Parts of the Basal Ganglia:
* Globus Pallidus * Striatum - Putamen - Caudate Nucleus * Lentiform nucleus – composed of globus pallidus & putamen
73
Substantia Nigra & Subthalamic Nuclei:
Important in motor control & work with basal ganglia. Similar in structure & function to basal ganglia. (Sometimes substantia nigra may be considered part of basal ganglia.) Located primarily in midbrain Important in motor control – works with basal ganglia.
74
Reticular formation:
Part of brain stem Important in motor control
75
Localization of Neurological Lesions:
Damage can be: 1. Focal – found in single area. 2. Multifocal – found in more than one area. 3. Diffuse – involve bilateral symmetric parts of nervous system, such as dementia, where there is generalized cerebral atrophy
76
Etiologies capable of producing Motor Speech Disorders (6):
1. Degenerative diseases-gradual decline in neuronal function. 2. Inflammatory diseases-Meningitis 3. Toxic-metabolic diseases-due to vitamin deficiencies, drug toxicity. 4. Neoplastic dz – tumors. 5. Traumatic injuries – gunshot, car accidents, falls, etc. 6. Vascular diseases – CVA most common. Neurons deprived of oxygen due to disruption in blood supply. CVA results in focal lesions and is acute.
77
Motor Unit:
Consist of motor neuron and muscle fibers innervated by the motor neuron.
78
Lower Motor Neurons:
Motor nuclei through which CNS sends impulses to muscles (and glands). Motor neurons involved in motor movement & originate in brain stem or spinal cord from a cranial or spinal nerve Axons of these neurons leave cell bodies & travel to specific muscles. Axons subdivide into branches that connect with muscles fibers
79
Inproper innervation of muscles can result in (2):
- muscle atrophies (withers) | - fasiculations.
80
How can an axon innervate several muscles fibers?
it splits into branches
81
Do muscles fibers receive information from just 1 motor neuron?
No. Each fiber may receive input from branches of different motor neurons
82
Upper Motor Neurons:
Cell bodies in motor cortex and their descending axonal processes that synapse on cranial and spinal motor neurons Originate in upper brain levels
83
4 main parts to speech motor system:
1. Final Common Pathway 2. Direct Activation Pathway 3. Indirect Activation Pathway 4. Control Circuits *The organization of the speech motor system emphasizes motor (efferent) pathways, however sensory (afferent) pathways are important also and problems in sensory pathways can impact motor function
84
Final Common Pathway of the Speech Motor System:
Also called Lower Motor Neuron system or PNS. Called Final Common Pathway because it’s the last link in sequence of motor events that lead to motor movement & all other components have to go through it. Includes: - 12 paired cranial nerves - 31 paired spinal nerves
85
Muscles Innervation can be (4)
1. Bilateral 2. Unilateral And: 1. Contralateral 2. Ipsilateral
86
Bilateral Muscle Innervation:
Receives innervation from both sides Protective function for most of cranial nerves If one side is damaged, the other side may stay intact. Provides protection for important functions.
87
Unilateral Muscle Innervation:
Receives innervation from only 1 side Damage occurs more easily than with bilateral innervation
88
Contralateral Muscle Innervation:
Receives innervation from opposite side
89
Ipsilateral Muscle Innervation:
Receives innervation from same side
90
For most nerves equal innervation comes from...
opposite (both) sides of the cortex
91
Does Cranial Nerve VII (facial nerve) have bilateral or contralateral innervation?
Both! - bilateral innervation for upper face - contralateral, unilateral innervation for lower face
92
How is Cranial Nerve XII (hyproglassal) innervated?
- Bilateral to most tongue muscles | - Contralateral innervation to genioglossus
93
Where can lesions (damage) to nerves occur?
either UMN or LMN
94
Damage to LMN system results in:
1. weakness 2. atrophy 3. fasiculations
95
Cranial Nerve V (Trigeminal Nerve):
- Bilateral Innervation - Largest of cranial nerves - Sensory from face, mouth, jaw, tongue. - Motor to muscles of mastication, tensor tympani (middle ear, tenses the tympanic membrane), tensor veli palatini (tenses soft palate), mylohyoid (extrinsic laryngeal muscle involved in moving larynx)
96
Bilateral lesions to Cranial Nerve V (Trigeminal Nerve) (a LMN) result in:
- Jaw may hang open at rest | - Can have profound effect on speech
97
Unilateral lesions to Cranial Nerve V (Trigeminal Nerve) (a LMN):
- Jaw deviates to weak side ALWAYS | - Does not affect speech too much
98
Cranial Nerve VII (Facial Nerve):
- Innervates muscles of facial expression - Bilateral innervation – to upper face - so if patient can’t wrinkle forehead, there are probably 2 lesions. - Contralateral– to lower part of face
99
Cranial Nerve IX (Glossopharyngeal Nerve):
- Innervates stylopharyngeus muscle of pharynx (elevates pharynx in speech & swallowing). - Sends sensory information from pharynx, tongue and Eustachian tube. - Lesions cause reduced pharyngeal sensation & decrease in gag reflex. - Bilateral innervation
100
3 Branches of Cranial Nerve X (Vagus Nerve):
1. Pharyngeal branch 2. Superior laryngeal branch 3. Recurrent laryngeal nerve * Bilateral innervation for all branches
101
Pharyngeal branch of the Vagus Nerve (CN X):
Innervates muscles of pharynx (except stylopharyngeus – IX) and soft palate (except tensor veli palatini-Vth) , also palatoglossus muscle of tongue Responsible for elevating & pulling back the velum in VP closure in speech & swallowing. (Levator palatini – one of the main muscles which elevates soft palate.) (Cranial nerve IX assists the pharyngeal branch in this.)
102
Superior laryngeal branch of the Vagus Nerve (CN X):
Innervates pharyngeal constrictor and cricothyroid (intrinsic laryngeal muscle – changes pitch through tensing vocal folds)
103
Recurrent Laryngeal Nerve branch of the Vagus Nerve (CN X):
Innervates other intrinsic laryngeal muscles | i.e. lateral cricoarytenoid, interarytenoids and posterior cricoarytenoid, thyroarytenoid
104
Cranial Nerve XI ((Spinal) Accessory Nerve):
- Head and neck movement - Intermingles with Vagus and contributes to innervation of levator palatini (elevates soft palate) and somewhat to intrinsic laryngeal muscles - Bilateral innervation
105
Cranial Nerve XII (Hypoglossal Nerve):
- Innervates all intrinsic tongue muscles and all extrinsic tongue muscles except palatoglossus (innervated by Xth) - Innervation is bilateral to all tongue muscles, except genioglossus - Damage can cause atrophy, weakness & fasiculations on tongue (LMN). - UMN lesion – tongue deviates to side contralateral to lesion - LMN lesion – tongue deviates to same side of lesion
106
When unilateral lesions occur, why does the structure (tongue, jaw, etc.) deviate to the side of weakness?
Because normal muscle contraction occurs on the strong (normal) side and no or little contraction occurs on the weak side There is nothing to counteract the action of the muscle on the normal side This results in the tongue, jaw, etc. being pushed to the weak side
107
If the unilateral lesion is UMN, the structure deviates...
contralateral to the side of the lesion
108
If the unilateral lesion is LMN, the structure deviates...
ipsilateral to the side of the lesion
109
If the lesion is bilateral, the result is...
decreased ROM and decreased strength
110
Spinal Nerves innervate...
muscles of respiration, including the phrenic nerve which innervates the diaphragm
111
Direct Activation Pathway (Pyramidal Tract):
- Directly connects and influences the FCP/LMN - Along with the Indirect Activation Pathway, makes up the UMN system - UMN system includes neurons that regulate the LMNs
112
2 tracts that make up part of the Upper Motor Neuron System and Direct Activation Pathway:
1. Coricobulbar | 2. Corticospinal
113
Corticobulbar Tract:
- Most important for speech - involves the cranial nerves important for speech - Originates in cortex (mainly at the primary motor cortex) and terminates in brainstem at the level of the cranial nerve nuclei involved with speech - Called corticobulbar because “bulb” refers to brainstem, where the axons terminate
114
Corticospinal Tract:
-Originates in cortex and descends to lower medulla where it terminates at the level of the spinal nerve nuclei
115
Where do the Corticobulbar and Corticospinal tracts descend form?
Both tracts descend from cortex (primarily motor cortex of both hemispheres, also from premotor cortex and Supplemental Motor area) through corona radiata and internal capsule to brainstem. The corticospinal tract continues on to the spinal cord.
116
The Direct Activation Pathway is important for...
controlled skilled, discrete and often rapid voluntary movements as is seen in speech
117
Do unilateral LMN lesions have a severe impact on speech?
Yes
118
Do unilateral UMN lesions have a severe impact on speech?
No. | Because there is still innervation from the other side
119
Do bilateral UMN lesions have a severe impact on speech?
Yes
120
Where does weakness occur when UMN lesions is unilateral?
Typically on the opposite side of the body (contralateral)
121
Indirect Activation Pathway (Extrapyramidal Pathway):
- Part of the UMN system along with the Direct Activation Pathway. - Is less understood and its function is difficult to separate from basal ganglia and cerebellum - Does influence directly the LMN system whereas the basal ganglia and cerebellum do not - Starts in motor cortex and has various synapses before arriving at brainstem - The DAP is analogous to a direct or express train line with no stops. Whereas the IAP is like a local line stopping at various places - The IAP is made up of several short paths and interconnected structures between the origin in the cortex and its final termination at the cranial nerve nuclei and spinal cord nuclei (corticorecticular, etc.)
122
Reticular formation:
Scattered cells in the brainstem that is important in sensorimotor integration
123
Control Circuits (function):
Integrate or help control the structures and pathways involved in motor movement Have no direct contact with LMNs
124
Control Circuits (2):
1. Basal Ganglia | 2. Cerebellum
125
Basal Ganglia Control Circuit:
- Depends on balance among several neurotransmitters (AcH, dopamine, and GABA (gamma-aminobutyric acid) for aiding motor activity. - Provides input to cerebral cortex to coordinate motor movement. - Involved in regulating muscle tone & maintaining normal posture.
126
Damage to the Basal Ganglia Control Circuit:
Can result in Hypokinetic dysarthria or Hyperkinetic dysarthria
127
Cerebellar Control Circuit:
Integrates and coordinates movements for speech, including timing, size of muscular action and sequences of movements to provide smoothly flowing well-timed, coordinated speech
128
Damage to the Cerebellar Control Circuit:
ataxic dysarthria