Concepts Pt 1. Flashcards
1
Q
Subtracting Exponents
A
You can factor out common exponents :
5^3 - 5^2 =
5^2 (5-1) =
5^2 (4) =
100
2
Q
What is an integer
A
a whole number that can be POSITIVE, NEGATIVE, or ZERO
- a non-negative integer = positive OR zero
3
Q
What to do with 3 unknown variables?
A
- Subtract one equation from the other
- Try square rooting both sides if possible
4
Q
List the answer: 1^3 2^3 3^3 4^3 5^3
A
1^3 = 1 2^3 = 8 3^3 = 27 4^3 = 64 5^3 = 125
5
Q
List the answer: 1^4 2^4 3^4 4^4 5^4
A
1^4 = 1 2^4 = 16 3^4 = 81 4^4 = 256 5^4 = 625
6
Q
List the answer: 1^5 2^5 3^5 4^5 5^5
A
1^5 = 1 2^5 = 32 3^5 = 243 4^5 = 1024 5^5 = 3125
7
Q
How can you simplify:
= √12 √3
A
= √12 √3
= √12•3
= √36
=6
8
Q
Special Products:
(x + y)^2
A
(x + y)^2 = x^2 + 2xy + y^2
9
Q
Special Products:
x + y) (x - y
A
(x + y) (x - y) = x^2 - y^2
10
Q
Special Products:
(x - y)^2
A
(x - y)^2 = x^2 - 2xy + y^2
11
Q
Exponets:
a^0 =
A
a^0 = 1
12
Q
Exponets:
a ^ -m =
A
a ^ -m = 1 / (a^m)
0r conversly:
a ^ m = 1 / (a^-m)
13
Q
Exponets:
a^m • a^n =
A
a^m • a^n = a^m+n
14
Q
Exponets:
a^m / a^n =
A
a^m / a^n = a^m-n
15
Q
Exponets:
(a^m)^n =
A
(a^m)^n = a^mn