Chp 9: Integration 2 Flashcards
Integral of sin x ^n
-( 1/n ) sin x ^ (n-1) cos x + (n-1)/n integral of sin x^ (n-2) dx
Integral of cos x^ n
( 1/n ) cos x ^ (n-1) sin x + (n-1)/n integral of cos x^ (n-2) dx
Integral of (tan x)^n
( (Tan x )^n-1 / n - 1 ) - integral of (tan x) ^(n-2)
Integral of ( sec x )^n
( Sec x ^ (n-2) tan x / n-1 ) + (n-2)/(n-1) integral of sec x^n-2
Cos ^n (odd)
- Split into factors of cos x
- Apply cos^2 x = 1- sin ^2 x
- Sub u = sin x
Sin ^m x (odd)
- Split into factors of sin x
- Apply sin^2 x = 1- cos ^2 x
- Sub u = cos x
Sin ^ m x cos ^ n x (even)
Use sin^2 x = 1/2(1-cos 2x) and cos^2 x = 1/2(1+ cos 2x)
Integral of 1/(x^2 - a^2)
1/2a (ln (x-a/x+a) ) + C
Integral of 1/(x^2 + a^2)
1/a ( tan ^-1 (x/a) ) + c
Integral of 1/(a^2 - x^2 )
1/2a ( ln (a + x/ a-x ) ) + c
Integral of 1/ [(a^2 - x^2 )]^1/2
Inverse sin (x/a) + C
Integral of 1/(x^2 + a^2)^1/2
Inverse sinh (x/a) + C
Integral of 1/(x^2 - a^2)^1/2
Inverse cosh (x/a) + C
Integral of u dv
uv - integral of v du
Sec ^n x (even)
- Split into factors of sec^2 x
- Apply sec^2 x = tan ^2 x + 1
- Sub u = tan x