Chapter 8 Flashcards
Theorem. Analogue of FlT for ℤ[i]
Let p be a prime and α∈ℤ[i]
αᵖ = {α modp if p≡1mod4, α* modp if p≡3mod4
Lemma (α + β)ᵖ ≡ αᵖ + βᵖ modp
Let R be a ring, p a prime number and α,β∈R. Then
(α + β)ᵖ ≡ αᵖ + βᵖ modp
idea of proof for (α + β)ᵖ ≡ αᵖ + βᵖ modp
- use binomial theorem on (α + β)ᵖ
2. if 1 ≤ k < p then p chose k is an integer that is congruent to 0 modulo p.
idea for proof of analogue of FlT in ℤ[i]
αᵖ = {α modp if p≡1mod4, α* modp if p≡3mod4
- write α=a+bi
- apply lemma to get αᵖ≡aᵖ+(bi)ᵖmodp
- apply FlT in the integers to get αᵖ≡a+biᵖmodp
- we claim that iᵖ= {i if p≡1mod4, -i if p≡3mod4
- if p≡1mod4, p = 1 + 4k so iᵖ = i*i⁴ᵏ = i
(similar for p≡3mod4)
Theorem. Analogue of FlT for ℤ[√3]
Let p>3 be a prime and α∈ℤ[√3]
αᵖ = {α modp if p≡±1mod12, α* modp if p≡±5mod12
idea of proof for Analogue of FlT for ℤ[√3]
αᵖ = {α modp if p≡±1mod12, α* modp if p≡±5mod12
- write α=a+b√3
- apply lemma to get αᵖ≡aᵖ+(b√3)ᵖmodp
- apply FlT in the integers to get αᵖ≡a+b√3ᵖmodp ≡ a+b√3√3ᵖ⁻¹modp ≡ a+b√3(3/p)modp
- use GLQR we get
αᵖ = {α modp if p≡±1mod12, α* modp if p≡±5mod12
Mersenne Number
Let n∈ℕ, the nth Mersenne number is Mₙ=2ⁿ-1
Mersenne Prime
A Mersenne number Mₙ=2ⁿ-1 which is prime
Lemma. If Mₙ is prime…
Let n∈ℕ. if Mₙ is prime then n is prime
Proof of lemma if Mₙ is prime then n is prime
contradiction. Suppose n=ab. Then 2ⁿ-1 = 2ᵃᵇ-1 which we can factorise which contradicts the hypothesis that Mₙ is prime.
The Lucas test
Define a sequence of numbers r₀, r₁, . . . bᵧ
r₀=4 rᵢ₊₁ = rᵢ²-2
Let n be a prime, n ≥ 3. Then Mₙ is prime if an only if rₙ₋₂≡0modn
μ =
μ = 1 + √3
𝜏 =
𝜏 = 2 + √3
𝜏𝜏* =
1
2𝜏 =
μ²