Chapter 7/8 definitions Flashcards
1
Q
Mersenne Number
A
Let n∈ℕ, the nth Mersenne number is Mₙ=2ⁿ-1
2
Q
Mersenne Prime
A
A Mersenne number Mₙ=2ⁿ-1 which is prime
3
Q
The Lucas test
A
Define a sequence of numbers r₀, r₁, . . . bᵧ
r₀=4 rᵢ₊₁ = rᵢ²-2
Let n be a prime, n ≥ 3. Then Mₙ is prime if an only if rₙ₋₂≡0modn
4
Q
μ =
A
μ = 1 + √3
5
Q
𝜏 =
A
𝜏 = 2 + √3
6
Q
order (in an arbitrary ring)
A
Let R be a ring, n∈{0} and a∈R. The order of a modulo n in R is the smallest natural number d s.t. aᵈ≡1modn. if such d exists. if not a does not have an order modulo n.