Chapter 7: Applications of the residue theorem Flashcards
1
Q
Cauchy PV of th eintegral
$$\int_\infty^\infty f(x) dx $$
A
P.V. $\int_\infty^\infty f(x) dx = \lim_{R\to\infty} \int_R^R f(x) dx$
provided that this limit exists
2
Q
rel betwen $$\int_\infty^\infty f(x) dx $$ and pv cauchy
A
If the intergral converges on $-\infty \to +\infty$ (i.e. on 0 to infty and on neg then) then it will equal cauchy pv
converse not true in general
3
Q
Lemma
when does func (which 2 conditions) $\int_\infty^\infty f(x) dx $ conv and = cpv of integral
A
f is cont
even function on $(-\infty , +\infty)$