Chapter 6.1 - Capacitors Flashcards
Capacitance
Charge stored per volt
Basic Equation for capacitance
C = Q/V
Structure of a capacitor
Two conductors separated by an insulator called a dieletric. Often rolled up to make it more compact.
Charging a capacitor (with reference to electrons)
When connected to a source of E.M.F. electrons will build up on the negative terminal of the capacitor. These electrons will then repel other electrons on the opposite plate, making it positively charged. As more electrons build up they repel further electrons from reaching the plate causing the current to decrease.
The P.D. over a fully charged capacitor
The same as that of the E.M.F
Discharging a capacitor (with reference to electrons)
Once the E.M.F is no longer being applied to the capacitor the electrons will flow from the negative plate through the wires.
How to experimentally measure capacitance
Set up a capacitance in series with an ammeter and a voltmeter around, along with a variable resistor. Turn on the power and adjust the variable resistor to keep the current the same (start it high). Regularly take readings for potential difference and current. Calculate charge at a given time by using Q = It. Plot a graph of Q against V and take the gradient of the line to be the capacitance. (Or you can use the final charger divided by the final voltage but this may be less reliable).
Measuring capacitance graphically
The gradient of a Q-V graph
Effective capacitance of multiple capacitors in parallel
C = C1 + C2 + C3…
Effective capacitance of multiple capacitors in series
1/C = 1/C1 + 1/C2 + 1/C3…
Energy stored by a capacitor from a graph
Area under a V-Q graph
Energy stored by a capacitor (basic equation)
E = (1/2)QV
Disadvantages of using capacitors as an energy store (2)
- Can’t store much energy
- Energy slowly leaks out
Examples of capacitors used as energy storage (3)
- Flash devices for cameras. A capacitor stores energy which is then released very quickly, exciting a gas and causing a brief flash.
- Back up energy supply. Large capacitors can be used for a short term supply of back up energy (long enough to safely shut down computers and ensure data is saved in the event of a power cut).
- Pulsed power in nuclear fusion research. Large capacitors output power at extremely high values. The power output of the Z machine is greater than that of all power stations on earth combined!
At what point in charging a capacitor will there be the greatest current
At the beginning