Chapter 3 Equations Flashcards
dy/dx sin(x)
cos(x)
dy/dx cos(x)
-sin(x)
dy/dx tan(x)
sec^2(x)
dy/dx sec(x)
sec(x)tan(x)
dy/dx csc(x)
-csc(x)cot(x)
dy/dx cot(x)
-csc^2(x)
dy/dx sin^-1(x)
1 / sqrt(1-x^2)
dy/dx cos^-1(x)
-1 / sqrt(1-x^2)
dy/dx tan^-1(x)
1 / (1+x^2)
dy/dx cot^-1(x)
-1 / (1+x^2)
dy/dx csc^-1(x)
-1 / (abs(x) * sqrt(x^2 - 1))
dy/dx sec^-1(x)
1 / (abs(x) * sqrt(x^2 - 1))
dy/dx logx (base a)
1/(x*lna)
dy/dx a^x
a^x * lna
dy/dx e^x
e^x
d/dx a^u(x)
a^u(x) * ln(a) * u’(x)
f(x)=a^u(x)
ln(f(x))=u(x)ln(a) #take the natural log of both sides, rearrange
(1/f(x))f’(x)=ln(a)u’(x) #ln(a) is a constant
f’(x)=f(x)ln(a)u’(x) #we know f(x)
f’(x)=(a^u(x))ln(a)*u’(x) #substitute for f(x). Done
f(x) and g are inverse functions. What is the slope of g(x)?
g’(y0)=1/f’(x0)
example, f(x)=2x
f(2)=4, so g(4)=2
g’(4)=1/f’(g(4))=1/f’(2)=1/2
derivative of f(g(x))
f’(g(x))*g’(x)
Leibniz notation: dy/dx=dy/du * du/dx
d/dx f(x)^n
n*f(x)^(n-1) * f’(x)
Difference between implicit and explicit?
implicit: y is not isolated
explicit: y is isolated
arc before a trig function
inverse. ex: sin^-1 (x) = arcsin(x)