Chapter 2: Quadratics Flashcards
4 ways of solving quadratic equations?
-Factorisation
-Solving without factorisation
-Completing the square
-Quadratic formula
1st step in solving 2x+√x+1=0
Let √x=y
2y^2+y+1=0
Solve…
For solving without factorisation method, solve:
(x-1)^2=5
x-1=+/-√5
x=+/-√5
For ax^2+bx+c=0
How do I solve for x?
x=-b+/-√b2-4ac
2a
When is the quadratic formula most appropriate to use?
-Co-efficient of x^2 is large
-3 parts are hard to be easily divided by a number
Define completing the square.
Putting a quadratic equation in the form (x+a)^2+b=0/a(x+b)^2+c=0
When is completing the square often used.
When x only appears once in the expression (ie (x+2)^2)
Solve, using completing the square, 3x^2-18x+4=0
…
(x-3)^2-23/3=0
(x-3)^2=23/3
x-3=+/-√23/3
x=+/-√23/3 + 3
Prove, using completing the square, that ax^2+bx+c=0
x=-b+/-√b2-4ac
2a
x^2/a+bx/a+c/a=0
(x+b/2a)^2-b^2/4a^2+c/a=0
(x+b/2a)^2=b^2/4a^2 - c/a
(x+b/2a)^2=b^2-4ac/4a^2
x+b/2a=+/-√b^2-4ac
2a
x=-b+/-√b2-4ac
2a
Define the domain of a function.
Set of values of possible inputs of function.
Define the range of a function.
Set of values of possible outputs of a function.
Define the roots of a function.
Values of x when f(x)=0
f(x)=2x-10
g(x)=x^2-9
a) Find g(5)
b) Find the values for x when f(x)=g(x)
c) Find the roots of f(x)
d) Find the roots of g(x)
a)
25-9=16
b)x^2-9=2x-10
x^2-2x+1=0
(x-1)(x-1)=0
x=1
c)2x-10=0
2x=10
x=5
d)x^2-9=0
(x+3)(x-3)=0
x=3 or x=-3
How can you determine the value of the maximum/minimum of a function.
By completing the square
(x-3)^2-7
What is the minimum value.
(3,-7)