Chapter 1: Algebraic Expressions Flashcards
a^m x a^n=
a^m+n
a^m / a^n=
a^m-n
(a^m)^n=
a^mn
(ab)^n
a^n b^n
For the quadratic expression, 2x^2+5x-12, describe how I can factorise.
Split the middle term, into 2 numbers that multiply to create constant term, and add for middle term:
e.g. 8+-3
Therefore,
2x^2+8x
-3x-12
Factorise:
2x(x+4) -3(x+4)
First bracket is common multiplier (e.g. (x+4)
Second bracket is multiples outside (e.g (2x-3))
Thus:
(x+4)(2x-3)
a^0=
1
a^1/m=
m√a
a^n/m=
(m√a)^n
a^-m=
1/a^m
a^-n/m=
1/(a^m)^n
If b=1/9a^2, determine
3b^-2 in the form ka^n, with k and n constants.
b=1/9a^2
Therefore 3b^-2:
3(1/9a^2)^-2
3(a^2/9)^-2
3(9/a^2)^2
3(81/a^4)
=243/a^4
=243a^-4
If 125√5=5%k
What is k?
5^3 x 5^1/2
=5^7/2
k=7/2
(3^1/4)^n=3^x/81^y
Express n in terms of x and y.
3^n/4=3^x/81^y
3^n/4=3^x/3^4y
3^n/4=3^x-4y
n/4=x-4y
n=4(x-4y)
n=4x-16y
Simplify 2x^2-x
x^5
In these questions, split:
2x^2/x^5 -x/x^5
=2/x^3 - 1/x^4
=2x^-3-x^-4
As y=3^x,
Express the following in terms of y
1/27^5x-2
(y=3^x)
1/3^3(5x-2)
1/3^15x-6
3^-(15x-6)
3^-15x+6
=3^-15x x 3^6
=3^-15x x 729
(y=36x)
729y^15