Chapter 11 Flashcards
Cold sores on the skin of the mouth occur when herpes simplex viruses that are dormant in neural ganglia become active and travel to the skin of the mouth. Which of the following is the mechanism by which these viruses travel from the ganglia (located within the head) to the skin of the mouth?
anterograde axonal transport
Where in the neuron is an action potential initially generated?
axon hillock
The depolarization phase of an action potential results from the opening of which channels?
voltage-gated Na+ channels
The repolarization phase of an action potential results from __________.
the opening of voltage-gated K+ channels
Hyperpolarization results from __________.
slow closing of voltage-gated K+ channels
What is the magnitude (amplitude) of an action potential?
100 mV
What type of conduction takes place in unmyelinated axons?
Continuous conduction
An action potential is self-regenerating because __________.
depolarizing currents established by the influx of Na+ flow down the axon and trigger an action potential at the next segment
Why does regeneration of the action potential occur in one direction, rather than in two directions?
The inactivation gates of voltage-gated Na+ channels close in the node, or segment, that has just fired an action potential.
What is the function of the myelin sheath?
The myelin sheath increases the speed of action potential conduction from the initial segment to the axon terminals.
What changes occur to voltage-gated Na+ and K+ channels at the peak of depolarization?
Inactivation gates of voltage-gated Na+ channels close, while activation gates of voltage-gated K+ channels open.
In which type of axon will velocity of action potential conduction be the fastest?
Myelinated axons with the largest diameter
The membranes of neurons at rest are very permeable to _____ but only slightly permeable to _____.
K+; Na+
During depolarization, which gradient(s) move(s) Na+ into the cell?
both the electrical and chemical gradients
What is the value for the resting membrane potential for most neurons?
–70 mV