Ch.7+8 Continuous Prob. Distribution Flashcards
to Population or Sample
In Uniform Distribution, calculate
(between range a to b)
Mean
Variance
St. Deviation
μ = (a+b) / 2
. (b-a)²
σ² = ——–
. 12
σ = sqrt(σ²)
In Normal Distribution,
calculate
x
x = μ + z·σ
In Normal Distribution,
calculate
z for
1. Population
2. Sample
3. Proportion
1.. x-μ
z = ——-
. σ
=NORM.S.INV(prob.)
2.. x-μ
z = ————–
. σ / sqrt(n)
3.. phat-p
z = —————
. sqrt(p·q/n)
When using
NORM.S.DIST(z,1)
in Excel,
the probability value
represents the area to the ____ under the bell-shape curve
LEFT
In Normal Distribution,
Given x ₁ & x ₂,
Steps in Excel to find
P(x₁ < x < x₂)
- Find z₁ & z₂ from
z = (x-μ)/σ
round 2-digit decimal - Find P(x<x₁) & P(x<x₂) from NORM.S.DIST(z,true)
- P(x<x₂) - P(x<x₁)
4-digit decimal
given x→ formula z→ excel prob
In Normal Distribution,
Given Prob.1 & Prob.2,
Steps in Excel to find
Range of x₁ & x₂
- Find z₁ & z₂ from
NORM.S.INV(Prob)
round 2-digit decimal - Find x₁ & x₂ from
x = μ+z·σ
given prob→ excel z→ formula x
Distinguish to calculate
x / xbar / phat
-
Sample n? No → x
Yes → 2. - About
xbar → xbar (n>30)
or proportion → phat (np&nq>5)
σxbar
= σ / sqrt(n)
σphat
= sqrt(pq/n)
Checking of Normal Approximation
for
1. Sample
2. Proportion
- n ≥ 30
- n·p ≥ 5 & n·q ≥ 5