Ch.3 Numeric Descriptive Measures Flashcards
μ vs x-bar
Mean of
Population vs Sample
μ =∑x / N
Positively Skewed
if Mean __ Median
Mean > Median
Symmetrical
if Mean __ Median
Mean = Median = Mode
σ²
Variance 方差 (sigma²)
σ² = ∑(x-μ)² / N
Measure of Spread = Avg Distance² from Mean
σ
Standard Deviation (sigma)
Distance from Mean on avg
Chebyshev’s Theorem:
Empirical Rule
when:
μ ± 1σ
μ ± 2σ
μ ± 3σ
≈68%
≈95%
≈99.7%
(μ@middle)
In Box Plot
Q₁=
Q₂=
Q₃=
IQR=
(Interquartile Range)
Lower Limit=
Upper Limit=
Range=
& Outlier
Q₁= 25%
Q₂= 50% Median
Q₃= 75%
QUARTILE.EXC
IQR= Q₃ - Q₁
Lower Limit= Q₁- 1.5IQR
Upper Limit= Q₃+1.5IQR
Range= Max-Min
Outlier :
> Upper Limit or
< Lower Limit
Frequency Table
(f & x):
Mean
Median
Mode
Mean= ∑fx / ∑f
Median= the Class (x) of [(∑f)+1]/2 locates
Mode= the Class (x) of most x’s
Frequency Table
(f & x):
s² Variance=
Variance
∑f·(x-xbar)²
s² = —————
n-1
s² Variance
(no frequency)
Variance
∑(x-xbar)²
s² = —————
n-1
Coefficient of Variance
CV =
population & sample
CV= σ / μ (%)
population
CV= s / xbar (%)
sample
CV ↑ ⇒ Variable ↑
Frequency Distribution Table
w/ Classes
e.g. 15 to under 30
Find Mid Point as x
e.g. 22.5 = (15+30)/2
Chebyshev’s Theorem:
Non-Normal Proportion Data Set
How to find k in
μ ± kσ or
xbar ± ks
% ≥ 1- 1/k²