CFA - QM Flashcards
Nominal Risk free Rate =
Real Risk free rate + expected inflation
EAR =
Effective Annual Rate - (1 + I)^T - 1
Nominal rate of interest =
Nominal risk free rate + risk premium
Annuity due
Beginning of each period
Ordinary annuities
end of each compounding period
PV perpetuity =
PMT / r
Numerical data
values that can be counted or measured
Dentro de Numerical data, temos discrete data que seria
countable (days, months, etc)
Dento de Numerical data, temos Contiunous data que seria
can take any fractional value
Categorical data
Labels that can be used to classify a set of data into grupos
Dento de Categorical Data, temos Nominal data que seria
cannot be placed in order logically
Dento de Categorical Data, temos Ordinary data que seria
can be ranked in a logical order
Time series
set of observations taken periodically
Cross-sectional data
set of comparable observations all taken at one specific point in time
Structural data
organized in a defined way
Unstructured data
no defined structured
Marginal Frequency
total of frenquecies for a row ou colum
Joint frequencies
displays of two variables
Confusion Matrix
is a contigency table that displays predicted and actual occurences of an event
Arithmetic mean =
( x1 + x2 + x3 + xn) / n
Geometric Mean =
=[(1+R 1 )(1+R 2)…(1+R n)] 1/n −1
Weighted Mean =
W1 x R1 + W2 x R2 + W3 X R3 + Wn x Rn
Weighted Mean often used to calculate …
Portfolio return
Harmonic Mean =
N / (1/xi) -> Sendo N=numero total e Xi=valores
Trimmed Mean
exclude a stated percentage of most extreme observations
Winsorized mean
substitute values for the most extreme observations
Median
midpoint of a data set
Mode
value occruing most frequently in a data set
Quantile =
(n+1) x Y/100
Mean Absolute Deviation (MAD) =
MAD= ∑∣x i − xˉ ∣ / n
Sample Variance =
s^2 = ∑ (x i − xˉ)^2 / n − 1
Sample Standard Deviation =
s = raiz quadrada de: ∑ (x i − xˉ)^2 / n − 1
Sample Variance nos mostra…
a variação dos dados em relação ao ponto central
Sample Standard Deviation nos mostra
a variação média
Coefficient of Variation (CV) =
Standard Deviation (s) / average value of x
Coefficient of Variation nos mostra…
quantas unidades de risco por quantas unidades de retorno - (Measures the amount of dispersion in a distribution relative to the distributions mean
Coefficient of Varition é melhor: um coeficiente alto ou baixo?
Baixo, pq indica pouca variação
Target Downside Deviation =
s = raiz quadrada de: ∑ (x i − Bˉ)^2 / n − 1
Target Downside Deviation calulate…
risk based on outcomes both above and below the mean
Skew measures…
the dregree to wich a distribuiton lacks symmetry
Skew = 0; Median, Mode and mean is
Mean = Median = Mode
Skew positiva
Mean > Median > Mode
Kurtosis measures
the degree to which a distribution is more or less peaked than a normal distribution (concentação nas caldas)
Skew negativa
Mean < Median < Mode
Kurtosis é igual a qual número se a distribuição for simétrica
igual 3
Sample Covariance =
Cov(X,Y)=∑(Xi−¯X)(Yi−¯Y) / n−1
Sample Covariance measure…
of how two variables move together
Correlation is
a standardized measure of the linear relationship between two variables
Correlation =
Corr(X,Y) = Cov[X,Y] / ( StdDev(X) ∙ StdDev(Y) )
Spurious Correlation refers
to correlation that is either the result of chance or present due to changes in both variables over time that is caused by their association with third variable. Exemplo: morte de pinguim e queimada na amazonia.
Random Variable is
an uncertain quantity/number
Probability of an event, a probabilidade é de xx até xx
de 0 até 1
Mutually exclusive events are
events that cannot both happen at the same time
Exhaustive events are
those tha include all possible outcomes
Probability Empirical is based…
on analysis of data
Probability of a priori is based
on reasing, not experience
Probability Subjective is based on…
personal perception
Probability Unconditional is …..
probabilidade de um evento acontecer, sem ter nenhuma condição de outro evento P(A)
Probability Conditional is ….
probabilidade de um evento acontecer, por conta de outro evento P(A | B)
Joint probability is …
de dois eventos acontecerem ao mesmo tempo P(AB)
Rules of Probability, Quando usar + e - e quando usar X. Sobre and e or
Para and -> P (AB) = P (A|B) X P (B) / Para or -> P (A or B) = P(A) + P(B) - P(AB)
Bayer´s Formula =
Prob (HG | DI) = P (DI | HG) X P(HG) / P (DI)