C4.2 Transfers of energy and matter Flashcards
C4.2.1—Ecosystems as open systems in which both energy and matter can enter and exit
Students should know that in closed systems only energy is able to pass in and out.
C4.2.2—Sunlight as the principal source of energy that sustains most ecosystems
Include exceptions such as ecosystems in caves and below the levels of light penetration in oceans.
NOS: Laws in science are generalized principles, or rules of thumb, formulated to describe patterns
observed in nature. Unlike theories, they do not offer explanations, but describe phenomena. Like
theories, they can be used to make predictions. Students should be able to outline the features of useful
generalizations.
C4.2.3—Flow of chemical energy through food chains
Students should appreciate that chemical energy passes to a consumer as it feeds on an organism that is
the previous stage in a food chain
C4.2.4—Construction of food chains and food webs to represent feeding relationships in a community
Represent relationships in a local community if possible. Arrows indicate the direction of transfer of energy
and biomass.
C4.2.5—Supply of energy to decomposers as carbon compounds in organic matter coming from dead
organisms
Include faeces, dead parts of organisms and dead whole organisms.
C4.2.6—Autotrophs as organisms that use external energy sources to synthesize carbon compounds from
simple inorganic substances
Students should understand that energy is required for carbon fixation and for the anabolic reactions that
build macromolecules.
C4.2.7—Use of light as the external energy source in photoautotrophs and oxidation reactions as the
energy source in chemoautotrophs
Students should understand that oxidation reactions release energy, so they are useful in living organisms.
Include iron-oxidizing bacteria as an example of a chemoautotroph.
C4.2.8—Heterotrophs as organisms that use carbon compounds obtained from other organisms to
synthesize the carbon compounds that they require
Students should appreciate that complex carbon compounds such as proteins and nucleic acids are
digested either externally or internally and are then assimilated by constructing the carbon compounds
that are required.
C4.2.9—Release of energy in both autotrophs and heterotrophs by oxidation of carbon compounds in cell
respiration
Students are not required to be familiar with photoheterotrophs.
C4.2.10—Classification of organisms into trophic levels
Use the terms “producer”, “primary consumer”, “secondary consumer” and “tertiary consumer”. Students
should appreciate that many organisms have a varied diet and occupy different trophic levels in different
food chains.
C4.2.11—Construction of energy pyramids
Application of skills: Students should use research data from specific ecosystems to represent energy
transfer and energy losses between trophic levels in food chains.
C4.2.12—Reductions in energy availability at each successive stage in food chains due to large energy
losses between trophic levels
Decomposers and detritus feeders are not usually considered to be part of food chains. However, students
should understand the role of these organisms in energy transformations in food chains. Consider the
causes of energy loss.
C4.2.13—Heat loss to the environment in both autotrophs and heterotrophs due to conversion of
chemical energy to heat in cell respiration
Include the idea that energy transfers are not 100% efficient so heat is produced both when ATP is
produced in cell respiration and when it is used in cells.
C4.2.14—Restrictions on the number of trophic levels in ecosystems due to energy losses
At each successive stage in food chains there are fewer organisms or smaller organisms. There is therefore
less biomass, but the energy content per unit mass is not reduced.
C4.2.15—Primary production as accumulation of carbon compounds in biomass by autotrophs
The units should be mass (of carbon) per unit area per unit time and are usually g m−2 yr−1. Students should
understand that biomes vary in their capacity to accumulate biomass. Biomass accumulates when
autotrophs and heterotrophs grow or reproduce.