Book 1 Flashcards
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Bayes Forumla
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
kjhkjhl
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
AC
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
In probability, the complement of A or not A
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
0!
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Answer is 1
Zero Factorial
Factorial’s always end in x 1
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Labeling
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
situation where there are n items that can each receive one of k different labels.
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Combination vs Permutation
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
# of Combinations: regardless of order, this is a smaller number.
nCr = n!/ (n-r)! x r!
# of Permutations: order matters, larger number
nPr = n!/ (n-r)!
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
5 Counting Rules
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
No Groups
2 Groups only
2+ Groups
3+ subGroups
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Discrete Random Variable
vs
Continuous Random Variable
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Discrete: variable is one for which the number of possible outcomes can be counted, and for each possible outcome, there is a measurable and positive probability. aka # of days with rain within a month
Continuous: number of possible outcomes is
infinite, even if lower and upper bounds exist. # of daily days of rain can be measured in any subset of measurements (inches, half inches)
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Conditions for a Probablity Function
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
- Must be between 0 and 1
- All possibilities must sum to 1
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
Discrete Uniform Random Variable
next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }
one for which the probabilities for all possible
outcomes for a discrete random variable are equal.
think Fair Dice