Big O Notation Flashcards

1
Q

O(1)

A

O(1) describes an algorithm that will always execute in the same time (or space) regardless of the size of the input data set.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

O(N)

A

O(N) describes an algorithm whose performance will grow linearly and in direct proportion to the size of the input data set. The example below also demonstrates how Big O favours the worst-case performance scenario; a matching string could be found during any iteration of the for loop and the function would return early, but Big O notation will always assume the upper limit where the algorithm will perform the maximum number of iterations.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

O(N²)

A

O(N²) represents an algorithm whose performance is directly proportional to the square of the size of the input data set. This is common with algorithms that involve nested iterations over the data set. Deeper nested iterations will result in O(N³), O(N⁴) etc.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

O(2^N)

A

O(2^N) denotes an algorithm whose growth doubles with each addition to the input data set. The growth curve of an O(2^N) function is exponential — starting off very shallow, then rising meteorically. An example of an O(2^N) function is the recursive calculation of Fibonacci numbers:

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

O(log N).

A

Binary search is a technique used to search sorted data sets. It works by selecting the middle element of the data set, essentially the median, and compares it against a target value. If the values match, it will return success. If the target value is higher than the value of the probe element, it will take the upper half of the data set and perform the same operation against it. Likewise, if the target value is lower than the value of the probe element, it will perform the operation against the lower half. It will continue to halve the data set with each iteration until the value has been found or until it can no longer split the data set.

This type of algorithm is described as O(log N). The iterative halving of data sets described in the binary search example produces a growth curve that peaks at the beginning and slowly flattens out as the size of the data sets increase e.g. an input data set containing 10 items takes one second to complete, a data set containing 100 items takes two seconds, and a data set containing 1,000 items will take three seconds. Doubling the size of the input data set has little effect on its growth as after a single iteration of the algorithm the data set will be halved and therefore on a par with an input data set half the size. This makes algorithms like binary search extremely efficient when dealing with large data sets

How well did you know this?
1
Not at all
2
3
4
5
Perfectly