Association Rules Flashcards

1
Q

Was ist unüberwachtes Lernen?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Was sind die zwei Aufgaben von Data Mining?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Zu welcher Aufgabe des Dataminings gehören supervised und unsupervised Learning jeweils?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Was ist time series prediction?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Was ist das Ziel von Descriptive Modeling?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Was ist Dependency Modeling?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Was ist Change- & Deviation Detection?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Was ist die Motivation von Frequent Pattern Analysis as Association Rules?

A

Finding inherent regularities in data

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Beschreib KNN

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Wann overfittet und underfittet KNN im Bezug auf k?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Wie funktioniert KNN für Regression?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Was ist Case Based Reasoning?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Beschreib den CBR Prozess

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Was braucht man alles für CBR?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Was ist Support in Association Rules

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Was ist Confidence in Association Rules?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Wie berechne ich Confidence basierend auf Support?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Was ist die downward closure property of frequent patterns?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Beschreib Apriori: a Candidate Generation & Test Approach

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Major Clustering Approaches

Erkläre den Partitioning approach

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Major Clustering Approaches

Erkläre den Hierarchical approach

22
Q

Major Clustering Approaches

Erkläre Model- or Neural Network based

23
Q

Major Clustering Approaches

Erkläre Instance-based

24
Q

Major Clustering Approaches

Erkläre den Density-based approach

25
# Major Clustering Approaches Erkläre Dimensionality reduction methods
26
# Major Clustering Approaches Erkläre Graph clustering
27
# Major Clustering Approaches Erkläre den Grid-based approach
28
# Major Clustering Approaches Erkläre Frequent pattern-based
29
Wie kann man die Entfernung zwischen zwei Cluster bestimmen?
30
Was ist ein Single Link?
31
Was ist ein Complete link?
32
Was ist die Entfernung über Centroids?
33
Was ist die Entfernung über Medoids?
34
Wie berechnet man einen Mean-Centroid?
35
Wie berechnet man den Radius eines Clusters?
36
Wie berechnet man den Diameter eines Clusters?
37
Im Bezug auf intra-class und inter-class similarity? Wie schneiden gute Cluster ab?
38
Beschreib den Davies-Boulding index
39
Wie bestimmt man die Badness of separation of two clusters i, j?
40
Wann ist der Davies-Bouldin index besser, klein oder groß?
klein
41
Beschreib die Online Version des k-Means
Center wird nicht durch Mean der Datenpunkte in dem Cluster ersetzt, sondern:
42
Wie lange wendet man die Regel an, des Online Version k-Means?
43
Wieso konvergiert K-Means?
44
Wie effizient in O-Notation ist der k-Means?
45
Was sind Nachteile vom K-Means?
46
Was ist K-medians?
47
Was ist K-medoids?
48
Was ist hierarchical clustering?
49
Beschreib AGNES (Agglomerative Nesting)
50
Beschreib DIANA (Divisive Analysis). Wie viele Wege gibt es bei n Datenpunkten zu teilen?