adicione formule Flashcards
Šta je osnovna trigonometrijska formula?
sin² x + cos² x = 1
Kako se definiše tangens?
tg x = sin x / cos x; x ≠ kπ
Kako se definiše kotangens?
ctg x = cos x / sin x; x ≠ kπ
Koje su periodične funkcije za sinus?
sin(360°k + x) = sin x
Koje su periodične funkcije za kosinus?
cos(360°k + x) = cos x
Koje su periodične funkcije za tangens?
tg(180°k + x) = tg x
Koje su periodične funkcije za kotangens?
ctg(180°k + x) = ctg x
Kako se ponaša sinus kod negacije?
sin(-x) = -sin x
Kako se ponaša kosinus kod negacije?
cos(-x) = cos x
Kako se ponaša tangens kod negacije?
tg(-x) = -tg x
Kako se ponaša kotangens kod negacije?
ctg(-x) = -ctg x
Koja je adicija formula za sinus?
sin(x ± y) = sin x cos y ± cos x sin y
Koja je adicija formula za kosinus?
cos(x ± y) = cos x cos y ∓ sin x sin y
Kako se definiše tangens za zbir?
tg(x ± y) = (tg x ± tg y) / (1 ∓ tg x tg y)
Kako se definiše kotangens za zbir?
ctg(x ± y) = (ctg x ctg y ∓ 1) / (ctg x ± ctg y)
What is the formula for sin 2x?
sin 2x = 2 sin x cos x
This formula is derived from the double angle identities for sine.
What is the formula for cos 2x?
cos 2x = cos² x - sin² x
This is another expression of the double angle identity for cosine.
What is the formula for tg 2x?
tg 2x = (2 tg x) / (1 - tg² x)
This formula provides a way to express the tangent of a double angle.
What is the half-angle formula for sin?
sin(x/2) = √((1 - cos x) / 2)
This formula allows one to find the sine of half an angle using the cosine of the full angle.
What is the half-angle formula for cos?
cos(x/2) = √((1 + cos x) / 2)
This formula allows one to find the cosine of half an angle using the cosine of the full angle.
What is the formula for sin 3x?
sin 3x = 3 sin x - 4 sin³ x
This formula is derived from the trigonometric identity for sine of a triple angle.
What is the formula for cos 3x?
cos 3x = 4 cos³ x - 3 cos x
This formula is derived from the trigonometric identity for cosine of a triple angle.
What is the transformation formula for sin x sin y?
sin x sin y = 1/2 (cos(x - y) - cos(x + y))
This formula is useful for transforming products of sine functions into sums.
What is the transformation formula for sin x cos y?
sin x cos y = 1/2 (sin(x - y) + sin(x + y))
This formula facilitates the conversion of sine and cosine products into sums.